Удаление теней в Python OpenCV
Я пытаюсь реализовать удаление теней в Python OpenCV, используя метод минимизации энтропии по Finlayson, et. и др.:
"Внутренние изображения путем минимизации энтропии", Finlayson, et. и др.
Я не могу соответствовать результатам из бумаги. Мой график энтропии не совпадает с графиком из бумаги, и я получаю неправильную минимальную энтропию.
Какие-нибудь мысли? (У меня есть намного больше исходного кода и документов по запросу)
#############
# LIBRARIES
#############
import numpy as np
import cv2
import os
import sys
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from PIL import Image
import scipy
from scipy.optimize import leastsq
from scipy.stats.mstats import gmean
from scipy.signal import argrelextrema
from scipy.stats import entropy
from scipy.signal import savgol_filter
root = r'\path\to\my_folder'
fl = r'my_file.jpg'
#############
# PROGRAM
#############
if __name__ == '__main__':
#-----------------------------------
## 1. Create Chromaticity Vectors ##
#-----------------------------------
# Get Image
img = cv2.imread(os.path.join(root, fl))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
plt.imshow(img)
plt.title('Original')
plt.show()
img = cv2.GaussianBlur(img, (5,5), 0)
# Separate Channels
r, g, b = cv2.split(img)
im_sum = np.sum(img, axis=2)
im_mean = gmean(img, axis=2)
# Create "normalized", mean, and rg chromaticity vectors
# We use mean (works better than norm). rg Chromaticity is
# for visualization
n_r = np.ma.divide( 1.*r, g )
n_b = np.ma.divide( 1.*b, g )
mean_r = np.ma.divide(1.*r, im_mean)
mean_g = np.ma.divide(1.*g, im_mean)
mean_b = np.ma.divide(1.*b, im_mean)
rg_chrom_r = np.ma.divide(1.*r, im_sum)
rg_chrom_g = np.ma.divide(1.*g, im_sum)
rg_chrom_b = np.ma.divide(1.*b, im_sum)
# Visualize rg Chromaticity --> DEBUGGING
rg_chrom = np.zeros_like(img)
rg_chrom[:,:,0] = np.clip(np.uint8(rg_chrom_r*255), 0, 255)
rg_chrom[:,:,1] = np.clip(np.uint8(rg_chrom_g*255), 0, 255)
rg_chrom[:,:,2] = np.clip(np.uint8(rg_chrom_b*255), 0, 255)
plt.imshow(rg_chrom)
plt.title('rg Chromaticity')
plt.show()
#-----------------------
## 2. Take Logarithms ##
#-----------------------
l_rg = np.ma.log(n_r)
l_bg = np.ma.log(n_b)
log_r = np.ma.log(mean_r)
log_g = np.ma.log(mean_g)
log_b = np.ma.log(mean_b)
## rho = np.zeros_like(img, dtype=np.float64)
##
## rho[:,:,0] = log_r
## rho[:,:,1] = log_g
## rho[:,:,2] = log_b
rho = cv2.merge((log_r, log_g, log_b))
# Visualize Logarithms --> DEBUGGING
plt.scatter(l_rg, l_bg, s = 2)
plt.xlabel('Log(R/G)')
plt.ylabel('Log(B/G)')
plt.title('Log Chromaticities')
plt.show()
plt.scatter(log_r, log_b, s = 2)
plt.xlabel('Log( R / 3root(R*G*B) )')
plt.ylabel('Log( B / 3root(R*G*B) )')
plt.title('Geometric Mean Log Chromaticities')
plt.show()
#----------------------------
## 3. Rotate through Theta ##
#----------------------------
u = 1./np.sqrt(3)*np.array([[1,1,1]]).T
I = np.eye(3)
tol = 1e-15
P_u_norm = I - u.dot(u.T)
U_, s, V_ = np.linalg.svd(P_u_norm, full_matrices = False)
s[ np.where( s <= tol ) ] = 0.
U = np.dot(np.eye(3)*np.sqrt(s), V_)
U = U[ ~np.all( U == 0, axis = 1) ].T
# Columns are upside down and column 2 is negated...?
U = U[::-1,:]
U[:,1] *= -1.
## TRUE ARRAY:
##
## U = np.array([[ 0.70710678, 0.40824829],
## [-0.70710678, 0.40824829],
## [ 0. , -0.81649658]])
chi = rho.dot(U)
# Visualize chi --> DEBUGGING
plt.scatter(chi[:,:,0], chi[:,:,1], s = 2)
plt.xlabel('chi1')
plt.ylabel('chi2')
plt.title('2D Log Chromaticities')
plt.show()
e = np.array([[np.cos(np.radians(np.linspace(1, 180, 180))), \
np.sin(np.radians(np.linspace(1, 180, 180)))]])
gs = chi.dot(e)
prob = np.array([np.histogram(gs[...,i], bins='scott', density=True)[0]
for i in range(np.size(gs, axis=3))])
eta = np.array([entropy(p, base=2) for p in prob])
plt.plot(eta)
plt.xlabel('Angle (deg)')
plt.ylabel('Entropy, eta')
plt.title('Entropy Minimization')
plt.show()
theta_min = np.radians(np.argmin(eta))
print('Min Angle: ', np.degrees(theta_min))
e = np.array([[-1.*np.sin(theta_min)],
[np.cos(theta_min)]])
gs_approx = chi.dot(e)
# Visualize Grayscale Approximation --> DEBUGGING
plt.imshow(gs_approx.squeeze(), cmap='gray')
plt.title('Grayscale Approximation')
plt.show()
P_theta = np.ma.divide( np.dot(e, e.T), np.linalg.norm(e) )
chi_theta = chi.dot(P_theta)
rho_estim = chi_theta.dot(U.T)
mean_estim = np.ma.exp(rho_estim)
estim = np.zeros_like(mean_estim, dtype=np.float64)
estim[:,:,0] = np.divide(mean_estim[:,:,0], np.sum(mean_estim, axis=2))
estim[:,:,1] = np.divide(mean_estim[:,:,1], np.sum(mean_estim, axis=2))
estim[:,:,2] = np.divide(mean_estim[:,:,2], np.sum(mean_estim, axis=2))
plt.imshow(estim)
plt.title('Invariant rg Chromaticity')
plt.show()
Выход:
2 ответа
Удаление теней с использованием метода формирования инвариантного изображения при освещении (Ranaweera, Drew) в разделе "Результаты и обсуждение" отмечает, что результаты изображений JPEG и изображений PNG отличаются из-за сжатия JPEG. Поэтому ожидать результатов, точно таких, какие показывают "Внутренние изображения путем минимизации энтропии" (Финлейсон и др.), Может быть неоправданно.
Я также заметил, что вы не добавляете "дополнительный свет", который автор рекомендует в других статьях.
Также при определении rg_chrom
порядок каналов должен быть BGR вместо RGB, как вы использовали.
Я работаю над реализацией статьи, поэтому ваш код был чрезвычайно полезен для меня. Спасибо за это
Код Matlab для сегментации теней и удаления приведен в приложении к приложенному документу. Надеюсь, это поможет вам. справочный документ