Удаление теней в Python OpenCV

Я пытаюсь реализовать удаление теней в Python OpenCV, используя метод минимизации энтропии по Finlayson, et. и др.:

"Внутренние изображения путем минимизации энтропии", Finlayson, et. и др.

Я не могу соответствовать результатам из бумаги. Мой график энтропии не совпадает с графиком из бумаги, и я получаю неправильную минимальную энтропию.

Какие-нибудь мысли? (У меня есть намного больше исходного кода и документов по запросу)

#############
# LIBRARIES
#############
import numpy as np
import cv2
import os
import sys
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from PIL import Image
import scipy
from scipy.optimize import leastsq
from scipy.stats.mstats import gmean
from scipy.signal import argrelextrema
from scipy.stats import entropy
from scipy.signal import savgol_filter

root = r'\path\to\my_folder'
fl = r'my_file.jpg'

#############
# PROGRAM
#############
if __name__ == '__main__':

    #-----------------------------------
    ## 1. Create Chromaticity Vectors ##
    #-----------------------------------

    # Get Image
    img = cv2.imread(os.path.join(root, fl))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    h, w = img.shape[:2]

    plt.imshow(img)
    plt.title('Original')
    plt.show()

    img = cv2.GaussianBlur(img, (5,5), 0)

    # Separate Channels
    r, g, b = cv2.split(img) 

    im_sum = np.sum(img, axis=2)
    im_mean = gmean(img, axis=2)

    # Create "normalized", mean, and rg chromaticity vectors
    #  We use mean (works better than norm). rg Chromaticity is
    #  for visualization
    n_r = np.ma.divide( 1.*r, g )
    n_b = np.ma.divide( 1.*b, g )

    mean_r = np.ma.divide(1.*r, im_mean)
    mean_g = np.ma.divide(1.*g, im_mean)
    mean_b = np.ma.divide(1.*b, im_mean)

    rg_chrom_r = np.ma.divide(1.*r, im_sum)
    rg_chrom_g = np.ma.divide(1.*g, im_sum)
    rg_chrom_b = np.ma.divide(1.*b, im_sum)

    # Visualize rg Chromaticity --> DEBUGGING
    rg_chrom = np.zeros_like(img)

    rg_chrom[:,:,0] = np.clip(np.uint8(rg_chrom_r*255), 0, 255)
    rg_chrom[:,:,1] = np.clip(np.uint8(rg_chrom_g*255), 0, 255)
    rg_chrom[:,:,2] = np.clip(np.uint8(rg_chrom_b*255), 0, 255)

    plt.imshow(rg_chrom)
    plt.title('rg Chromaticity')
    plt.show()

    #-----------------------
    ## 2. Take Logarithms ##
    #-----------------------

    l_rg = np.ma.log(n_r)
    l_bg = np.ma.log(n_b)

    log_r = np.ma.log(mean_r)
    log_g = np.ma.log(mean_g)
    log_b = np.ma.log(mean_b)

    ##  rho = np.zeros_like(img, dtype=np.float64)
    ##
    ##  rho[:,:,0] = log_r
    ##  rho[:,:,1] = log_g
    ##  rho[:,:,2] = log_b

    rho = cv2.merge((log_r, log_g, log_b))

    # Visualize Logarithms --> DEBUGGING
    plt.scatter(l_rg, l_bg, s = 2)
    plt.xlabel('Log(R/G)')
    plt.ylabel('Log(B/G)')
    plt.title('Log Chromaticities')
    plt.show()

    plt.scatter(log_r, log_b, s = 2)
    plt.xlabel('Log( R / 3root(R*G*B) )')
    plt.ylabel('Log( B / 3root(R*G*B) )')
    plt.title('Geometric Mean Log Chromaticities')
    plt.show()

    #----------------------------
    ## 3. Rotate through Theta ##
    #----------------------------
    u = 1./np.sqrt(3)*np.array([[1,1,1]]).T
    I = np.eye(3)

    tol = 1e-15

    P_u_norm = I - u.dot(u.T)
    U_, s, V_ = np.linalg.svd(P_u_norm, full_matrices = False)

    s[ np.where( s <= tol ) ] = 0.

    U = np.dot(np.eye(3)*np.sqrt(s), V_)
    U = U[ ~np.all( U == 0, axis = 1) ].T

    # Columns are upside down and column 2 is negated...?
    U = U[::-1,:]
    U[:,1] *= -1.

    ##  TRUE ARRAY:
    ##
    ##  U = np.array([[ 0.70710678,  0.40824829],
    ##                [-0.70710678,  0.40824829],
    ##                [ 0.        , -0.81649658]])

    chi = rho.dot(U) 

    # Visualize chi --> DEBUGGING
    plt.scatter(chi[:,:,0], chi[:,:,1], s = 2)
    plt.xlabel('chi1')
    plt.ylabel('chi2')
    plt.title('2D Log Chromaticities')
    plt.show()

    e = np.array([[np.cos(np.radians(np.linspace(1, 180, 180))), \
                   np.sin(np.radians(np.linspace(1, 180, 180)))]])

    gs = chi.dot(e)

    prob = np.array([np.histogram(gs[...,i], bins='scott', density=True)[0] 
                      for i in range(np.size(gs, axis=3))])

    eta = np.array([entropy(p, base=2) for p in prob])

    plt.plot(eta)
    plt.xlabel('Angle (deg)')
    plt.ylabel('Entropy, eta')
    plt.title('Entropy Minimization')
    plt.show()

    theta_min = np.radians(np.argmin(eta))

    print('Min Angle: ', np.degrees(theta_min))

    e = np.array([[-1.*np.sin(theta_min)],
                  [np.cos(theta_min)]])

    gs_approx = chi.dot(e)

    # Visualize Grayscale Approximation --> DEBUGGING
    plt.imshow(gs_approx.squeeze(), cmap='gray')
    plt.title('Grayscale Approximation')
    plt.show()

    P_theta = np.ma.divide( np.dot(e, e.T), np.linalg.norm(e) )

    chi_theta = chi.dot(P_theta)
    rho_estim = chi_theta.dot(U.T)
    mean_estim = np.ma.exp(rho_estim)

    estim = np.zeros_like(mean_estim, dtype=np.float64)

    estim[:,:,0] = np.divide(mean_estim[:,:,0], np.sum(mean_estim, axis=2))
    estim[:,:,1] = np.divide(mean_estim[:,:,1], np.sum(mean_estim, axis=2))
    estim[:,:,2] = np.divide(mean_estim[:,:,2], np.sum(mean_estim, axis=2))

    plt.imshow(estim)
    plt.title('Invariant rg Chromaticity')
    plt.show()

Выход:

оригинал

рг Цветность

Лог Цветности

Среднегеометрическая логарифмическая цветность

2D геометрические логарифмические цветности

Минимизация энтропии

Приближение градаций серого

Инвариант рг Цветность

2 ответа

Удаление теней с использованием метода формирования инвариантного изображения при освещении (Ranaweera, Drew) в разделе "Результаты и обсуждение" отмечает, что результаты изображений JPEG и изображений PNG отличаются из-за сжатия JPEG. Поэтому ожидать результатов, точно таких, какие показывают "Внутренние изображения путем минимизации энтропии" (Финлейсон и др.), Может быть неоправданно.

Я также заметил, что вы не добавляете "дополнительный свет", который автор рекомендует в других статьях.

Также при определении rg_chromпорядок каналов должен быть BGR вместо RGB, как вы использовали.

Я работаю над реализацией статьи, поэтому ваш код был чрезвычайно полезен для меня. Спасибо за это

Код Matlab для сегментации теней и удаления приведен в приложении к приложенному документу. Надеюсь, это поможет вам. справочный документ

Другие вопросы по тегам