Увеличение изображения в смешанной функциональной модели Keras
Я создал смешанную модель в Keras, создав веса для метаданных и данных изображения, а затем объединил их для классификации. Вот модель:
Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_5 (InputLayer) [(None, 80, 120, 3)] 0
__________________________________________________________________________________________________
xception (Functional) (None, 3, 4, 2048) 20861480 input_5[0][0]
__________________________________________________________________________________________________
input_4 (InputLayer) [(None, 10)] 0
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 3, 4, 8) 409608 xception[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 4) 44 input_4[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 8) 0 conv2d_9[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 12) 0 dense_3[0][0]
global_average_pooling2d_1[0][0]
__________________________________________________________________________________________________
dense_4 (Dense) (None, 4) 52 concatenate_1[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 1) 5 dense_4[0][0]
==================================================================================================
Total params: 21,271,189
Trainable params: 21,216,661
Non-trainable params: 54,528
__________________________________________________________________________________________________
Я решил увеличить изображения из-за дисбаланса. Я использовал следующий ImageDataGenerator:
aug = ImageDataGenerator(rescale=1/255.,
rotation_range=180,
height_shift_range=0.2,
width_shift_range=0.2,
brightness_range=[0.5,1.5],
channel_shift_range=100.0,
horizontal_flip=True,
vertical_flip=True,
shear_range=45.0)
Затем я скомпилировал и попытался обучить модель, используя
ImageDataGenerator().flow()
:
epochs = 10
BATCH_SIZE = 20
flow = aug.flow(img_train, y_train, batch_size=BATCH_SIZE)
history = model.fit([meta_train, flow], y_train, epochs=epochs, batch_size=100, validation_data=([meta_test, img_test], y_test), class_weight=class_weight)
Это дает мне ошибку:
ValueError: Failed to find data adapter that can handle input: (<class 'list'> containing values of
types {"<class 'pandas.core.frame.DataFrame'>", "<class 'tensorflow.python.keras.preprocessing.image.NumpyArrayIterator'>"}),
<class 'numpy.ndarray'>
Я пробовал несколько версий кода, но я недостаточно знаком с серверной частью, чтобы правильно диагностировать проблему. Кто-нибудь может мне с этим помочь?
2 ответа
во-первых, если вы генерируете следующие массивы, ваши модели работают без ошибок;
import tensorflow as tf
import numpy as np
LEARNING_RATE = 0.001
# Define inputs
meta_inputs = tf.keras.layers.Input(shape=(10,))
img_inputs = tf.keras.layers.Input(shape=(80,120,3,))
# Model 1
meta_layer1 = tf.keras.layers.Dense(4, activation='relu')(meta_inputs)
# Model 2
xception_layer = tf.keras.applications.Xception(include_top=False, input_shape=(80,120,3,))(img_inputs)
img_conv_layer1 = tf.keras.layers.Conv2D(8, kernel_size=(5,5), padding='same', activation='relu')(xception_layer)
img_gap_layer = tf.keras.layers.GlobalAveragePooling2D()(img_conv_layer1)
# img_sdense_layer = Dense(4, activation='relu')(img_gap_layer)
# Merge models
merged_layer = tf.keras.layers.Concatenate()([meta_layer1, img_gap_layer])
merged_dense_layer = tf.keras.layers.Dense(4, activation='relu')(merged_layer)
merged_output = tf.keras.layers.Dense(1, activation='sigmoid')(merged_dense_layer)
# Define functional model
model = tf.keras.models.Model(inputs=[meta_inputs, img_inputs], outputs=merged_output)
# Compile model
auc = tf.keras.metrics.AUC(name = 'auc')
model.compile(tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), loss='binary_crossentropy', metrics=[auc])
model.summary()
Давайте сгенерируем массивы, как показано ниже;
y_array = np.zeros((23188, 1))
train_array = np.zeros((23188, 80, 120,3))
meta_array = np.zeros((23188, 10))
Теперь протестируйте вашу модель;
model.fit(x = [meta_array, train_array], y = y_array, epochs = 1)
как вы можете видеть, это работает
>>> model.fit(x = [meta_array, train_array], y = y_array, epochs = 1)
2021-05-17 10:30:03.430303: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
2021-05-17 10:30:03.447843: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 3093120000 Hz
47/725 [>.............................] - ETA: 6:52 - loss: 0.6818 - auc: 0.0000e+00
Теперь проблема в ваших входах:
(1) сначала преобразуйте все ваши метаданные в массив, допустим, у него есть пакет из 1000, в результате он должен иметь форму
meta_train.shape
является
(1000,10)
(2) ваш
img_train.shape
является
(1000,80,120,3)
(3) ваш
y_train.shape
является
(1000,1)
здесь 1000 также может быть 23188. Но предположим, что у вас 1000 изображений, y_train(цель) и 1000 метаданных.
Если вы хотите улучшить свой имидж-поезд, будьте осторожны. Используйте, как показано ниже;
import tensorflow as tf
import numpy as np
import time
здесь я создал пустой массив в качестве примера, но ваши исходные данные должны быть в массиве, как показано ниже, за исключением того, что вместо 1000 это должно быть количество изображений, которые у вас есть.
y_train = np.zeros((1000, 1))
img_train = np.zeros((1000, 80, 120,3))
meta_train= np.zeros((1000, 10))
aug = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1/255.,
rotation_range=180,
height_shift_range=0.2,
width_shift_range=0.2,
brightness_range=[0.5,1.5],
channel_shift_range=100.0,
horizontal_flip=True,
vertical_flip=True,
shear_range=45.0)
aug.fit(img_train)
# NOTE; change batch_size to 32 if your img_train is too high or your device has less memory
# set shuffle to false, you have to concatenate at each loop the meta_train and y_train for each image, so do not shuffle the images!
imagenerator = aug.flow(img_train, batch_size = img_train.shape[0], shuffle=False, sample_weight=None, seed=123, save_to_dir=None, save_prefix="", save_format="png", subset=None)
new_meta = meta_train.copy() # concatenate meta_train at each loop to new_meta
new_y = y_train.copy() # concatenate y_train at each loop to new_y
batches = 0
#let's iterate 5 times.
for x_batch in imagenerator:
print(batches, time.strftime("%Y:%m%d-%H:%M:%S"))
batches += 1
img_train = np.concatenate((img_train, x_batch), axis = 0)
new_meta = np.concatenate((new_meta, meta_train), axis = 0) # concatenate corresponding meta data
new_y = np.concatenate((new_y, y_train), axis = 0) #concatenate corresponding label/target data!
if batches >= 5:
break
model.fit(x = [new_meta, img_train], y = new_y, epochs = 1, batch_size = 32)
ПРИМЕЧАНИЕ: вы можете перетасовать свои данные, как показано ниже, прежде чем использовать их в
model.fit
idxs = np.array([x for x in range(img_train.shape[0])])
np.random.shuffle(idxs)
img_train = img_train[idx]
new_y = new_y[idx]
new_meta = new_meta[idx]
Это не прямой ответ, но поможет решить вопрос. Отсутствует информация для решения вашей проблемы.
НО во-первых : самая очевидная проблема; Вы предоставляете
meta_train
который является фреймом данных pandas. Преобразуйте его в массив. Пожалуйста, сначала попробуйте это.
Во-вторых , если у вас все еще есть проблема, то
model.fit
не может обрабатывать список
[meta_train, flow]
, то вам, возможно, придется найти способ предоставить два ввода, которые будут обрабатываться вашей моделью.
Для этого вы должны предоставить следующее как MRE , чтобы воспроизвести вашу проблему.
(1) Ваш код для модели, даже если одна и та же модель может быть сгенерирована на основе предоставленного резюме.
(2) форма y_train.