Проблемы при попытке использовать KLT с OpenCV в моделировании ROS
Я пытаюсь создать несколько проектов Visual Odometry с ROS + Gazebo с алгоритмом KLT из OpenCV.
Мой код работает не так хорошо. Он отлично работал с использованием видеофайла в качестве источника, как в этом руководстве , но когда я пытаюсь использовать темы / изображения ROS в качестве входных данных, это не удается. Даже если я могу заставить точки функции отслеживать, вид застывает (мне нужно несколько раз нажать esc, чтобы обновить) и не рисует путь точек по мере его движения.
Я также попытался изменить смоделированную частоту кадров камеры, на случай, если это было слишком быстро для времени обработки, но безуспешно.
Я думаю, что делаю какую-то основную ошибку, связанную с обратным вызовом или событием, связанным с отношением «старый кадр» к «новому кадру», но не знаю, как ее решить.
Я был бы очень признателен, если бы кто-то мог оказать поддержку в этом вопросе.
Мой код ниже:
#!/usr/bin/env python
import roslib
import rospy
import sys
import cv2
import numpy as np
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError
class OpticalFlow(object):
def __init__(self):
#Setting up the bridge and the subscriber
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/realsense/color/image_raw", Image,self.image_callback)
# Parameters for Good Features Detection
self.feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for Lucas-Kanade optical flow
self.lk_params = dict( winSize = (150,150),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors for the tracking points
self.color = np.random.randint(0,255,(100,3))
def image_callback(self,ros_image):
# Using cv_bridge() to convert the ROS image to OpenCV format
try:
cv_image = self.bridge.imgmsg_to_cv2(ros_image, "bgr8")#bgr8
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
except CvBridgeError as e:
print(e)
cv2.imshow("Robot Image", cv_image) # The actual (non-processed image from the simulation/robot)
#cv2.imshow('Image HSV', hsv_image)
#cv2.imshow('Image Gray', gray)
frame = np.array(cv_image, dtype=np.uint8)
# Calling the Optical Flow Function
display = self.optical_flow(frame,self.feature_params,self.lk_params,self.color)
def optical_flow(self,frame,feature_params,lk_params,color):
old_frame = frame
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
mask = np.zeros_like(old_frame)
while(1):
newframe = frame
frame_gray = cv2.cvtColor(newframe, cv2.COLOR_BGR2GRAY)
# Calculating the optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# Draw the tracks
for i,(new,old) in enumerate(zip(good_new, good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('LK_Flow',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
def main():
optical_flow_object = OpticalFlow()
rospy.init_node('KLT_Node', anonymous=True)
rospy.loginfo("\nWaiting for image topics...\n...")
try:
rospy.spin()
except KeyboardInterrupt:
rospy.loginfo("\nShutting Down...\n...")
cv2.destroyAllWindows()
if __name__ == '__main__':
main()