Ошибка ключа байесовской сети граната для вероятности
** Я продолжаю получать ключевую ошибку (0,0), может ли кто-нибудь отладить это и сказать мне, где я ошибся, я потратил на это слишком много часов. Все работает, если бы я использовал model.predict_proba(доказательство), но я хочу найти точную вероятность того, когда модель дала доказательства. **
из импорта граната *
def Joint_probability(people, one_gene, two_genes, have_trait): """Вычислить и вернуть совместную вероятность.
The probability returned should be the probability that
* everyone in set `one_gene` has one copy of the gene, and
* everyone in set `two_genes` has two copies of the gene, and
* everyone not in `one_gene` or `two_gene` does not have the gene, and
* everyone in set `have_trait` has the trait, and
* everyone not in set` have_trait` does not have the trait.
"""
print(one_gene)
print(two_genes)
print(have_trait)
# construct bayesian network from dictionary
# construct bayesian network from dictionary
# Now for parents make discrete distribution nodes
left_parent = Node(DiscreteDistribution({
"2": 0.01,
"1": 0.03,
"0": 0.96,
}), "left_parent")
right_parent = Node(DiscreteDistribution({
"2": 0.01,
"1": 0.03,
"0": 0.96,
}), "right_parent")
# Make Has traits for left_parent and right_parent
left_trait = Node(ConditionalProbabilityTable([
# Probability of trait given copies of gene
["0", "True", 0.01],
["0", "False", 0.99],
["1", "True", 0.56],
["1", "False", 0.44],
["2", "True", 0.65],
["2", "False", 0.35],
], [left_parent.distribution]), "left_trait")
right_trait = Node(ConditionalProbabilityTable([
["0", "True", 0.01],
["0", "False", 0.99],
["1", "True", 0.56],
["1", "False", 0.44],
["2", "True", 0.65],
["2", "False", 0.35]
], [right_parent.distribution]), "right_trait")
# make childGene node which is conditional on MotherGene and FatherGene
child_gene = Node(ConditionalProbabilityTable([
# probability both parents give neither gene
['0', '0', '0', 0.99],
["0", "0", "1", 0.005],
["0", "0", "2", 0.005],
["0", "1", "0", 0.495],
["0", "1", "1", 0.495],
["0", "1", "2", 0.01],
["0", "2", "0", 0.495],
["0", "2", "1", 0.01],
["0", "2", "2", 0.495],
["1", "0", "0", 0.495],
["1", "0", "1", 0.495],
["1", "0", "2", 0.01],
["1", "1", "0", 0.005],
['1', '1', '1', 0.495],
["1", "1", "2", 0.005],
["1", "2", "0", 0.01],
["1", "2", "1", 0.495],
["1", "2", "2", 0.495],
["2", "0", "0", 0.495],
["2", "0", "1", 0.01],
["2", "0", "2", 0.495],
["2", "1", "0", 0.01],
["2", "1", "1", 0.495],
["2", "1", "2", 0.495],
['2', '2', "0", 0.005],
["2", "2", "1", 0.005],
["2", "2", "2", 0.99],
], [left_parent.distribution, right_parent.distribution]),"child_gene")
# make child has trait
child_trait = Node(ConditionalProbabilityTable([
['0','0',0],
['1','0',0],
['2','0',0],
["0", "True", 0.01],
["0", "False", 0.99],
["1", "True", 0.56],
["1", "False", 0.44],
["2", "True", 0.65],
["2", "False", 0.35],
], [child_gene.distribution]),"child_trait")
model = BayesianNetwork()
model.add_states(left_parent , right_parent, left_trait, right_trait, child_gene, child_trait)
model.add_edge(left_parent, left_trait)
model.add_edge(right_parent, right_trait)
model.add_edge(left_parent, child_gene)
model.add_edge(right_parent, child_gene)
model.add_edge(child_gene, child_trait)
model.bake()
final = 1
# separate children in people
children_list = []
for n in people:
# print(people[n]["mother"])
if people[n]["mother"] != None and people[n]["father"] != None:
children_list.append(people[n])
# loop through children list
for child in children_list:
# check if it has_trait and set trait,
if child["name"] in have_trait:
child_tra = "True"
else:
child_tra = "False"
# check if in one_gene or two_gene , else gene is 0
if child["name"] in one_gene:
child_g = "1"
elif child["name"] in two_genes:
child_g = "2"
else:
child_g = "0"
# for every parent of that child check , check if in has_trait and set trait, check if in one_gene or two_gene , else gene is 0
if child["mother"] in have_trait:
left_tra = "True"
else:
left_tra = "False"
# check if in one_gene or two_gene , else gene is 0
if child["mother"] in one_gene and child["mother"] is not None:
left_par = "1"
elif child["mother"] in two_genes and child["mother"] is not None:
left_par = "2"
else:
left_par = "0"
if child["father"] in have_trait:
right_tra = "True"
else:
right_tra = "False"
# check if in one_gene or two_gene , else gene is 0
if child["father"] in one_gene:
right_par = "1"
elif child["father"] in two_genes:
right_par = "2"
else:
right_par = "0"
#find probability by child
evidence = {
"left_parent": left_par,
"right_parent": right_par,
"left_trait": left_tra,
"right_trait": right_tra,
"child_gene": child_g,
"child_trait": child_tra
}
print(evidence)
print(model)
pr = model.probability(evidence)
final = final * pr
return final
если name == 'main':
model = Model()
people = {'Harry': {'name': 'Harry', 'mother': 'Lily', 'father': 'James', 'trait': None},
'James': {'name': 'James', 'mother': None, 'father': None, 'trait': True},
'Lily': {'name': 'Lily', 'mother': None, 'father': None, 'trait': False}}
one_gene=set()
two_genes=set()
have_trait={'James'}
print(joint_probability(people, one_gene, two_genes, have_trait))