Сохранение модели, содержащей универсальный кодировщик предложений, в качестве вложения
Я пытаюсь сохранить модель, которая использует USE из tf-hub в качестве слоя встраивания и имеет несколько наложенных на нее FFN. Модель работает нормально, но я столкнулся с проблемой при сохранении и загрузке модели.
disable_eager_execution()
embed = hub.Module(module_url)
def UniversalEmbedding(x):
return embed(tf.squeeze(tf.cast(x, tf.string)))
input_text = Input(shape=[], dtype=tf.string)
response_text = Input(shape=[], dtype=tf.string)
text_embedding = Lambda(UniversalEmbedding, output_shape=(512, ))(input_text)
response_embedding = Lambda(UniversalEmbedding, output_shape=(512, ))(response_text)
response_embedding = Dense(512, activation='relu')(response_embedding)
response_embedding = Dense(512, activation='relu')(response_embedding)
score = Dot(axes=1, normalize=True)([text_embedding, response_embedding])
pred = Dense(2, activation='softmax')(score)
text_encoder = Model(inputs=[input_text], outputs=text_embedding)
response_encoder = Model(inputs=[response_text], outputs=response_embedding)
model = Model(inputs=[input_text, response_text], outputs=pred)
Приведенный выше код - это то, как я построил свою модель (это модель с двойным кодировщиком с USE в качестве кодировщика).
Мне пришлось отключить активное выполнение, потому что USE, похоже, еще не работает в среде активного выполнения. Если нет, и если для этого есть обходной путь, я тоже буду очень признателен за любую помощь:)
Модель обучается и сохраняется с помощью следующего кода:
with tf.compat.v1.Session() as session:
K.set_session(session)
session.run(tf.compat.v1.global_variables_initializer())
session.run(tf.compat.v1.tables_initializer())
history = model.fit_generator(generator=train_neg_sample_generator,
validation_data=val_neg_sample_generator, epochs=20,
callbacks=[checkpointer, earlystopper], verbose=0)
и модель загружается без ошибок, когда веса в контрольных точках (сохраненные в файлах hdf5) загружаются в модель, определенную в приведенном выше коде. Таким образом, приведенный ниже код работает нормально только потому, что "модель" архитектуры уже определена выше.
with tf.compat.v1.Session() as session:
K.set_session(session)
session.run(tf.compat.v1.global_variables_initializer())
session.run(tf.compat.v1.tables_initializer())
model.load_weights('./saved_models/weights.03-0.29.hdf5')
tf.keras.models.save_model(model, 'test_model2.hdf5')
predicts = model.predict([["how are you?", "how are you?", 'hi', 'my two favorites in one pic!'], ["i'm fine", "what the heck", 'hi', 'same!']])
print(predicts)
print(np.argmax(predicts, axis=1))
Затем я попробовал 2 вещи. Сначала я попытался сохранить архитектуру в формате json, загрузить архитектуру модели, а затем загрузить веса, но это не сработало. Затем я попытался сохранить всю модель через keras.models.save_model, но это тоже не сработало.
В обоих случаях они вернули AttributeError: модуль tenorflow не имеет атрибута placeholder.
Как я могу сохранить / загрузить всю модель (если не сразу, загрузка архитектуры / веса по отдельности тоже подойдет)?
Вот весь журнал ошибок
AttributeError Traceback (most recent call last)
<ipython-input-31-47468f2533ad> in <module>()
1 from keras.models import load_model
2
----> 3 model2 = load_model('testest.h5')
13 frames
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py in load_wrapper(*args, **kwargs)
456 os.remove(tmp_filepath)
457 return res
--> 458 return load_function(*args, **kwargs)
459
460 return load_wrapper
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py in load_model(filepath, custom_objects, compile)
548 if H5Dict.is_supported_type(filepath):
549 with H5Dict(filepath, mode='r') as h5dict:
--> 550 model = _deserialize_model(h5dict, custom_objects, compile)
551 elif hasattr(filepath, 'write') and callable(filepath.write):
552 def load_function(h5file):
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py in _deserialize_model(h5dict, custom_objects, compile)
241 raise ValueError('No model found in config.')
242 model_config = json.loads(model_config.decode('utf-8'))
--> 243 model = model_from_config(model_config, custom_objects=custom_objects)
244 model_weights_group = h5dict['model_weights']
245
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py in model_from_config(config, custom_objects)
591 '`Sequential.from_config(config)`?')
592 from ..layers import deserialize
--> 593 return deserialize(config, custom_objects=custom_objects)
594
595
/usr/local/lib/python3.6/dist-packages/keras/layers/__init__.py in deserialize(config, custom_objects)
166 module_objects=globs,
167 custom_objects=custom_objects,
--> 168 printable_module_name='layer')
/usr/local/lib/python3.6/dist-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
145 config['config'],
146 custom_objects=dict(list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 147 list(custom_objects.items())))
148 with CustomObjectScope(custom_objects):
149 return cls.from_config(config['config'])
/usr/local/lib/python3.6/dist-packages/keras/engine/network.py in from_config(cls, config, custom_objects)
1041 # First, we create all layers and enqueue nodes to be processed
1042 for layer_data in config['layers']:
-> 1043 process_layer(layer_data)
1044
1045 # Then we process nodes in order of layer depth.
/usr/local/lib/python3.6/dist-packages/keras/engine/network.py in process_layer(layer_data)
1027
1028 layer = deserialize_layer(layer_data,
-> 1029 custom_objects=custom_objects)
1030 created_layers[layer_name] = layer
1031
/usr/local/lib/python3.6/dist-packages/keras/layers/__init__.py in deserialize(config, custom_objects)
166 module_objects=globs,
167 custom_objects=custom_objects,
--> 168 printable_module_name='layer')
/usr/local/lib/python3.6/dist-packages/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
147 list(custom_objects.items())))
148 with CustomObjectScope(custom_objects):
--> 149 return cls.from_config(config['config'])
150 else:
151 # Then `cls` may be a function returning a class.
/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py in from_config(cls, config)
1101 A layer instance.
1102 """
-> 1103 return cls(**config)
1104
1105 def count_params(self):
/usr/local/lib/python3.6/dist-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
/usr/local/lib/python3.6/dist-packages/keras/engine/input_layer.py in __init__(self, input_shape, batch_size, batch_input_shape, dtype, input_tensor, sparse, name)
85 dtype=dtype,
86 sparse=self.sparse,
---> 87 name=self.name)
88 else:
89 self.is_placeholder = False
/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py in placeholder(shape, ndim, dtype, sparse, name)
539 x = tf.sparse_placeholder(dtype, shape=shape, name=name)
540 else:
--> 541 x = tf.placeholder(dtype, shape=shape, name=name)
542 x._keras_shape = shape
543 x._uses_learning_phase = False
AttributeError: module 'tensorflow' has no attribute 'placeholder'
2 ответа
Отлично работал с tenorflow версии 1.15. Ждем, когда tf-hub станет полностью совместимым с tensorflow 2.0 и keras...
Предоставьте полный журнал ошибок, а не его часть.
Если это действительно ошибка из-за сохранения, то как насчет model.save('model.h5')
? Не использовать модуль изtf.keras.models
но вызовите метомд из Model
сам класс.
Но почему этот код?
with tf.compat.v1.Session() as session:
K.set_session(session)
session.run(tf.compat.v1.global_variables_initializer())
session.run(tf.compat.v1.tables_initializer())
Я верю, ты мог бы позвонить model.fit
сразу, а твой tf
версия 2 права? Зачем звонитьcompat.v1
?
Tensorflow 2 не имеет Placeholder
так что я думаю, что дело в этом.