Извлечение условных режимов из многоуровневой логистической регрессии

Я оцениваю многоуровневую логистическую регрессию, предсказывающую вероятность ошибки в данном исследовании. Модель имеет случайные эффекты участника, сценария и актера, а также фиксированные эффекты, основанные на двух переменных и их взаимодействии. Результаты ниже:

a1 <- glmer(errorDummy ~ race*object + #fixed effects
  (1|participant) + (1|scenario) + (1|actor), #random effects
  data = df, 
  control = glmerControl(optimizer="bobyqa"),
  family = binomial(link = "logit")) #binomial 
print(summary(a1), correlation = F) #decision to shoot

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: errorDummy ~ race * object + (1 | participant) + (1 | scenario) + (1 | actor)
   Data: df
Control: glmerControl(optimizer = "bobyqa")

     AIC      BIC   logLik deviance df.resid 
  6704.4   6759.2  -3345.2   6690.4    18397 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-2.557 -0.230 -0.108 -0.045 40.303 

Random effects:
 Groups      Name        Variance Std.Dev.
 participant (Intercept) 0.6115   0.7820  
 actor       (Intercept) 0.8919   0.9444  
 scenario    (Intercept) 1.3102   1.1446  
Number of obs: 18404, groups:  participant, 630; actor, 20; scenario, 8

Fixed effects:
                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)          -4.1705     0.4666  -8.938   <2e-16 ***
raceblack             0.1942     0.4410   0.440     0.66    
objectgun            -2.9482     0.1059 -27.846   <2e-16 ***
raceblack:objectgun  -0.3143     0.2074  -1.516     0.13    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Модель показывает, что ошибки в этой задаче встречаются редко. Тем не менее, они варьируются в зависимости от сценария:

coef(a1)$scenario
              (Intercept) raceblack objectgun raceblack:objectgun
alley           -2.331117 0.1942088 -2.948222          -0.3142849
domesticphone   -3.539802 0.1942088 -2.948222          -0.3142849
grocery         -5.314944 0.1942088 -2.948222          -0.3142849
parkinglot      -4.098250 0.1942088 -2.948222          -0.3142849
pulloverday     -3.084138 0.1942088 -2.948222          -0.3142849
pullovernight   -3.971451 0.1942088 -2.948222          -0.3142849
sidewalk        -5.619601 0.1942088 -2.948222          -0.3142849
warehouse       -4.539444 0.1942088 -2.948222          -0.3142849

То, что я хочу, - это оценка условных режимов (лучшее линейное непредвзятое прогнозирование?) Для каждого из восьми сценариев на шкале пропорций. То есть я хочу оценить вероятность ошибки в испытании для данного сценария.

Я знаю, что формула для этого, скажем, для перехвата в неуровневой логистической регрессии будет p = exp(logit) / (1 + exp(logit). Что будет переводиться в p = exp(-4.1705) / (1 + exp(-4.1705)). Но я уверен, что это проблематично в многоуровневом контексте со случайными факторами.

Как правильно оценить вероятность ошибки в испытании в данном сценарии? И есть ли в R пакеты, в которые может быть встроена эта функциональность?

0 ответов

Другие вопросы по тегам