Пользовательская функция потерь с классификатором adaboost
У меня есть данные и код, как пример данных и код ниже. В коде у меня есть два примера, в одном из которых я определяю пользовательскую функцию потерь и обучаю классификатор нейронной сети. И еще один пример кода, где я определяю пользовательскую функцию потерь и обучаю классификатор adaboost для тех же данных. Часть, о которой я действительно ломаю голову, заключается в том, достигаю ли я одной и той же цели с помощью пользовательской функции потерь в обоих случаях.
То есть "Минимизируйте функцию потерь, чтобы выбрать лучшую модель, используя только данные обучения".
Если я правильно об этом думаю, то в процессе обратного распространения следует использовать функцию потерь в нейронной сети, чтобы получить начальный вывод из модели, обученной в процессе прямой связи, в основном сопоставить прогнозы с некоторыми значениями обучающих данных, а затем отрегулируйте модель, чтобы получить меньшее значение функции потерь.
На шаге gridsearchcv с классификатором adaboost я использую ту же пользовательскую функцию потерь для оценки моделей, созданных из заданного набора гиперпараметров, с их выводом на тренировочные данные, затем выбираю модель, которая минимизирует функцию потерь на обучающих данных.
Классификатор Adaboost и нейронная сеть не совсем одинаковы, но общий процесс кажется одинаковым.
Я читал блог ниже о создании пользовательской функции потери и о том, как они говорили о потере обучения и потере проверки, меня смутило:
https://towardsdatascience.com/custom-loss-functions-for-gradient-boosting-f79c1b40466d
Если я использую gridsearchCV только с данными обучения, то это будет "потеря обучения", верно?
Это также связано с ранним постом, который я сделал, но это совершенно другой вопрос.
более раннее сообщение: сделайте свой собственный счет с GridSearchCV
Пример данных:
print(x_train_scld[:5])
[[ 0.37773519 2.0109691 0.49644224 0.21679945 0.538941 1.99144889
2.15011467 1.20312084 0.86114816 0.79507318 -0.45602028 0.07146743
-0.19524294 -0.33405545 -0.60264522 1.26724727 1.44991588 0.74630967
0.16529837 0.89613455 0.3253014 2.19166429 0.64865429 0.12894674
0.46995314 3.41479052 4.44308499 1.83182458 1.54348561 2.50155582]
[ 0.32029317 0.1214269 0.28824456 0.13510828 -0.0851059 -0.0057386
-0.31671716 0.0303454 0.32754165 -0.15354084 -0.36310852 -0.34419771
-0.28347519 -0.28927174 -0.39507256 -0.2039463 -0.49919802 0.12281647
-0.56756272 -0.30637335 0.10701249 0.21461633 0.17531634 -0.04414507
0.19574444 0.36354262 -1.23318869 0.59029124 0.28936372 0.19248437]
[ 0.25843254 0.29037034 0.21339798 0.12738073 0.28185716 -0.47995085
-0.13321816 0.14228058 -3.69915162 -0.10246162 0.26193423 0.12807553
0.18956053 0.12487671 -0.28174435 -0.71770499 -0.34455425 0.00729992
-0.70102685 -0.57022389 0.59171701 0.77319193 0.52065985 -1.37655715
0.59387438 -1.52826854 0.18054306 0.76212977 0.3639211 0.08726502]
[-0.70482588 -0.32963569 -0.74849491 -0.86505667 0.10026287 -0.87877366
-1.06584707 -1.19559926 0.34039964 0.10112554 -0.62427503 -0.3134676
-0.65996358 -0.52932857 0.11989554 -0.95345177 -0.67459484 -0.82130922
-0.52228025 -0.38191412 -0.75239269 -0.31180246 -0.7418967 -0.7432583
0.12191902 -0.97620932 -1.02049823 -1.20098216 -0.02333216 -0.24853266]
[-0.36680171 -0.14757043 -0.41413663 -0.56754624 -0.34512544 -0.76162172
-0.72684687 -0.61557149 0.31896966 -0.25351016 -0.6357623 0.12484078
-0.71632135 -0.51097128 0.26933611 -0.53549047 -0.54070413 -0.36472263
-0.24581883 -0.67901706 -0.44128802 0.16221265 -0.42239358 -0.52459003
0.34339528 -0.43064345 -1.23318869 -0.23310168 0.44404246 -0.40964978]]
print(x_test_scld[:5])
[[ 2.60641850e-01 -7.18369636e-01 3.27138629e-01 -1.76172773e+00
4.67645320e-01 1.53766591e+00 7.62837058e-01 4.07109050e-01
7.71142242e-01 9.80417766e-01 5.10262027e-01 5.66383900e-01
9.28678845e-01 2.06576727e-01 9.68389151e-01 1.48288576e+00
7.53349504e-01 7.04842193e-01 7.80186706e-01 6.43850055e-01
1.43107505e-01 -7.20312971e-01 2.96065817e-01 -4.51322867e-02
1.93107816e-01 7.41280492e-01 3.28514299e-01 4.47039330e-02
1.39136160e-01 4.94989991e-01]
[-7.51730115e-02 4.92568820e-02 -7.29146850e-02 -2.86318841e-01
1.00026599e+00 4.43886212e-01 4.80336890e-01 6.71683119e-01
8.61148159e-01 5.21434522e-01 -3.65135682e-01 -4.32021118e-01
-4.10049198e-01 -3.01778906e-01 -4.27568719e-02 -1.34413479e+00
-4.09570872e-02 1.64283954e-01 -3.04209384e-01 -7.10176931e-03
7.32148655e-03 -2.90459367e+00 2.31719950e-02 -1.37655715e+00
1.44286672e+00 1.07281572e+00 1.19548020e+00 1.44805187e+00
1.33316704e+00 1.55622575e+00]
[-1.23777794e-01 -3.83763205e-01 -1.65737513e-01 -3.43999436e-01
3.58604868e-01 -3.45623859e-01 -2.89602186e-01 -3.38277511e-01
8.23494778e-03 2.97415674e-01 -6.27653637e-01 -6.42441486e-01
-7.17707195e-01 -4.34516210e-01 6.01100047e-01 -2.64325075e-01
-2.31751338e-01 4.13624916e-02 7.46820672e-01 3.84336779e-01
-3.24408912e-01 -5.30945125e-01 -3.14685046e-01 -4.13363730e-01
6.43970206e-01 -2.37091815e-01 -1.45963962e-01 -2.97594271e-02
7.54512744e-01 6.49530907e-01]
[ 1.06041146e+00 3.61350612e-02 9.93240469e-01 1.11126264e+00
-2.54537983e-01 -2.50709092e-01 -3.56042668e-02 -1.19559926e+00
-2.25351836e-01 -4.65124054e-01 -4.64466800e-01 -1.10808348e+00
-4.47005113e-01 -2.07571731e-01 -1.11908130e+00 -8.49190558e-01
-5.40704133e-01 -6.40037086e-01 -1.10737748e+00 -9.30940117e-01
9.76730527e-01 2.34863210e-01 9.02228200e-01 9.43399666e-01
-1.25487123e-02 -1.70804996e-03 4.83277659e-01 7.07714236e-01
5.60886115e-01 -4.38009686e-01]
[ 3.57851416e-01 1.87811066e+00 2.77785646e-01 2.23975029e-01
-3.66933526e-01 -9.49100986e-01 -4.74866806e-01 -4.98802740e-01
2.69680706e-01 -5.60715159e-01 2.46392629e-01 7.53999293e-01
1.19344293e-01 1.24473258e-01 4.50284535e-02 -5.74844494e-01
-1.80203418e-01 -2.89340672e-01 1.37362545e+00 -6.91305992e-01
2.80612333e-01 1.49136056e+00 1.99466234e-01 1.55930637e-01
-2.39298218e-01 -9.12274848e-01 -4.82659170e-01 -6.00406523e-01
5.90931626e-01 -7.55722792e-01]]
print(y_train[:5])
562 1
291 0
16 1
546 0
293 0
Name: diagnosis, dtype: int64
print(y_test[:5])
421 0
47 1
292 0
186 1
414 1
Name: diagnosis, dtype: int64
Код:
# custom loss function
# importing libraries
import io
import os
import time
import pandas as pd
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense
import keras.backend as K
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, roc_curve, roc_auc_score, precision_recall_fscore_support, accuracy_score
import matplotlib.pyplot as plt
from IPython.core.display import display, HTML
# from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import fbeta_score, make_scorer
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
# neural network version
# custom loss function
def custom_loss_wrapper(fn_cost=1, fp_cost=1):
def custom_loss(y_true, y_pred, fn_cost=fn_cost, fp_cost=fp_cost):
h = K.ones_like(y_pred)
fn_value = fn_cost * h
fp_value = fp_cost * h
weighted_values = y_true * K.abs(1-y_pred)*fn_value + (1-y_true) * K.abs(y_pred)*fp_value
loss = K.mean(weighted_values)
return loss
return custom_loss
#The 'custom' model is trained on our custom loss function that weighs
#false negatives 5 time's more heavily than false positives.
model_five = Sequential()
model_five.add(Dense(units=num_classes, input_dim=input_dim, activation='sigmoid'))
# compile model
#Trained using custom loss function with false negatives weighted 5 times more heavily than false positives
custom_loss_five = custom_loss_wrapper(fn_cost=5, fp_cost=1)
model_five.compile(loss=custom_loss_five,
optimizer='sgd',
metrics=['accuracy'])
Версия классификатора Adaboost:
def custom_loss2(y_true, y_pred):
fn_cost, fp_cost = 5, 1
h = np.ones(len(y_pred))
fn_value = fn_cost * h
fp_value = fp_cost * h
weighted_values = y_true * np.abs(1-y_pred)*fn_value + (1-y_true) * np.abs(y_pred)*fp_value
loss = np.mean(weighted_values)
return loss
# TODO: Initialize the classifier
clf = AdaBoostClassifier(random_state=0)
# TODO: Create the parameters list you wish to tune
parameters = {'n_estimators':[100,200,300],'learning_rate':[1.0,2.0,4.0]}
# TODO: Make an fbeta_score scoring object
scorer2 = make_scorer(custom_loss2,greater_is_better=False)
# TODO: Perform grid search on the classifier using 'scorer' as the scoring method
grid_obj2 = GridSearchCV(clf,parameters,scoring=scorer2)
# TODO: Fit the grid search object to the training data and find the optimal parameters
grid_fit2 = grid_obj2.fit(x_train_scld,y_train)
# Get the estimator
best_clf2 = grid_fit2.best_estimator_
# Make predictions using the optimized and model
best_predictions = best_clf2.predict(x_test_scld)