Matlab: EM для гауссовых моделей смесей без распределения gm
Я должен тренировать модель гауссовой смеси, используя четыре компонента в данном наборе данных. Набор трехмерный и содержит 300 образцов.
Проблема в том, что я не могу проверить сходимость, используя логарифмическую вероятность, потому что это -Inf
, Это следует из округленных нулевых значений при оценке гауссиана в формуле обязанностей (см. E-шаг).
Можете ли вы сказать мне, правильна ли моя реализация алгоритма EM до сих пор? А как объяснить проблему с округленными нулевыми значениями?
Вот моя реализация алгоритма EM (одна итерация):
Сначала я инициализировал средства и ковариацию компонентов, используя kmeans:
load('data1.mat');
X = Data'; % 300x3 data set
D = size(X,2); % dimension
N = size(X,1); % number of samples
K = 4; % number of Gaussian Mixture components
% Initialization
p = [0.2, 0.3, 0.2, 0.3]; % arbitrary pi
[idx,mu] = kmeans(X,K); % initial means of the components
% compute the covariance of the components
sigma = zeros(D,D,K);
for k = 1:K
sigma(:,:,k) = cov(X(idx==k,:));
end
Для E-шага я использую следующую формулу для расчета ответственности
Вот соответствующий код:
gm = zeros(K,N); % gaussian component in the nominator -
% some values evaluate to zero
sumGM = zeros(N,1); % denominator of responsibilities
% E-step: Evaluate the responsibilities using the current parameters
% compute the nominator and denominator of the responsibilities
for k = 1:K
for i = 1:N
% HERE values evalute to zero e.g. exp(-746.6228) = -Inf
gm(k,i) = p(k)/sqrt(det(sigma(:,:,k))*(2*pi)^D)*exp(-0.5*(X(i,:)-mu(k,:))*inv(sigma(:,:,k))*(X(i,:)-mu(k,:))');
sumGM(i) = sumGM(i) + gm(k,i);
end
end
res = zeros(K,N); % responsibilities
Nk = zeros(4,1);
for k = 1:K
for i = 1:N
res(k,i) = gm(k,i)/sumGM(i);
end
Nk(k) = sum(res(k,:));
end
Nk(k)
вычисляется по формуле, приведенной в М-шаге.
М-шаг
% M-step: Re-estimate the parameters using the current responsibilities
mu = zeros(K,3);
for k = 1:K
for i = 1:N
mu(k,:) = mu(k,:) + res(k,i).*X(k,:);
sigma(:,:,k) = sigma(:,:,k) + res(k,i).*(X(k,:)-mu(k,:))*(X(k,:)-mu(k,:))';
end
mu(k,:) = mu(k,:)./Nk(k);
sigma(:,:,k) = sigma(:,:,k)./Nk(k);
p(k) = Nk(k)/N;
end
Теперь для проверки сходимости логарифмическое правдоподобие вычисляется по следующей формуле:
% Evaluate the log-likelihood and check for convergence of either
% the parameters or the log-likelihood. If not converged, go to E-step.
loglikelihood = 0;
for i = 1:N
for k = 1:K
loglikelihood = loglikelihood + log(gm(k,i));
end
end
loglikelihood
является -Inf
потому что некоторые gm(k,i)
значения в шаге Е равны нулю. Поэтому бревно явно отрицательная бесконечность.
Как я могу решить эту проблему?
Может ли это быть решено путем увеличения точности Matlab?
Или что-то не так с моей реализацией?
1 ответ
Согласно формуле, вы должны вычислить логарифм суммы величин в г. (итак, лог (сумма (гм (я,:)))). В пределах k компонентов, по крайней мере, один будет иметь вероятность больше 0. Это, надеюсь, решит вашу проблему.
Еще одно очень общее замечание: когда числа слишком велики для функций, как экспоненциальные, и когда вы уверены, что используете правильную формулу, вы всегда можете попытаться поработать с журналом величин. Но вам не нужно делать это здесь, так как 0 - хорошее приближение exp(-746);)