Как воспроизвести $resample и $result объекта train в карете?
Я новичок в этом замечательном пакете Caret и пытаюсь воспроизвести некоторые объекты из вывода train() из модели lm с помощью метода resampling = 'timeslice'.
- Почему $result$RMSE и $result$Rsquared в моем примере отличаются от выходных данных функции defaultSummary($pred$pred, $pred$obs)?
Какие данные используются для расчета RMSE, Rsquared, MAE в $resample?
require(caret) require(doParallel) no_cores <- detectCores() - 1 cls = makeCluster(no_cores) registerDoParallel(cls) data(economics) #str(economics) ec.data <- as.data.frame(economics[,-1]) #drop 'date' column #head(ec.data) #trainControl() with parallel processing and 1 step forecasts by TimeSlices------------------------ set.seed(123) samplesCount = nrow(ec.data) initialWindow = 10 h = 1 s = 0 M = 1 # no of models that are evaluated during each resample (tuning parameters) #seeds resamplesCount = length(createTimeSlices(1:samplesCount, initialWindow, horizon = h, fixedWindow = TRUE, skip = s)$test) seeds <- vector(mode = "list", length = resamplesCount + 1) # length = B+1, B = number of resamples for(i in 1:resamplesCount) seeds[[i]] <- sample.int(1000, M) # The first B elements of the list should be vectors of integers of >= length M where M is the number of models being evaluated for each resample. seeds[[(resamplesCount+1)]] <- sample.int(1000, 1) # The last element of the list only needs to be a single integer (for the final model) trainCtrl.ec <- trainControl( method = "timeslice", initialWindow = initialWindow, horizon = h, skip = s, # data splitting returnResamp = "all", savePredictions = "all", seeds = seeds, allowParallel = TRUE) lm.fit.ec <- train( unemploy ~ ., data = ec.data, method = "lm", trControl = trainCtrl.ec) lm.fit.ec head(lm.fit.ec$resample)
Выход:
> lm.fit.ec
Linear Regression
574 samples
4 predictor
No pre-processing
Resampling: Rolling Forecasting Origin Resampling (1 held-out with a fixed window)
Summary of sample sizes: 10, 10, 10, 10, 10, 10, ...
Resampling results:
RMSE Rsquared MAE
250.072 NaN 250.072
Tuning parameter 'intercept' was held constant at a value of TRUE
Почему выходные данные для RMSE и Rsquared не такие, как при расчете с defaultSummary()?
dat <- as.data.frame(cbind(lm.fit.ec$pred$pred, lm.fit.ec$pred$obs))
colnames(dat) <- c("pred", "obs")
defaultSummary(dat)
> defaultSummary(dat)
RMSE Rsquared MAE
394.440680 0.978365 250.072031
Как я могу воспроизвести результаты в $resample?
> head(lm.fit.ec$resample)
RMSE Rsquared MAE intercept Resample
1 16.33273 NA 16.33273 TRUE Training010
2 232.16184 NA 232.16184 TRUE Training011
3 197.65143 NA 197.65143 TRUE Training012
4 393.29469 NA 393.29469 TRUE Training013
5 129.99157 NA 129.99157 TRUE Training014
6 60.95649 NA 60.95649 TRUE Training015
Информация о сессии:
> sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Swedish_Sweden.1252 LC_CTYPE=Swedish_Sweden.1252 LC_MONETARY=Swedish_Sweden.1252
[4] LC_NUMERIC=C LC_TIME=Swedish_Sweden.1252
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] fpp_0.5 tseries_0.10-42 lmtest_0.9-35 zoo_1.8-0
[5] expsmooth_2.3 fma_2.3 forecast_8.2 mlbench_2.1-1
[9] spikeslab_1.1.5 randomForest_4.6-12 lars_1.2 doParallel_1.0.11
[13] iterators_1.0.8 foreach_1.4.3 caret_6.0-77.9000 ggplot2_2.2.1
[17] lattice_0.20-35
1 ответ
Я нашел ответ на мои вопросы здесь: https://stats.stackexchange.com/questions/114168/how-to-get-sub-training-and-sub-test-from-cross-validation-in-caret
Q1. Почему $result$RMSE и $result$Rsquared в моем примере отличаются от выходных данных функции defaultSummary ($ pred $ pred, $ pred $ obs)?
A: Выход из поезда рассчитывается как среднее из задержек. В моем примере:
# The output is the mean of $resample
mean(lm.fit.ec$resample$RMSE) # =250.072
mean(lm.fit.ec$resample$MAE) # =250.072
Q2. Какие данные используются для расчета RMSE, Rsquared, MAE в $resample?
> head(lm.fit.ec$resample)
RMSE Rsquared MAE intercept Resample
1 16.33273 NA 16.33273 TRUE Training010
2 232.16184 NA 232.16184 TRUE Training011
3 197.65143 NA 197.65143 TRUE Training012
4 393.29469 NA 393.29469 TRUE Training013
5 129.99157 NA 129.99157 TRUE Training014
6 60.95649 NA 60.95649 TRUE Training015
first_holdout <- subset(lm.fit.ec$pred, Resample == "Training010")
first_holdout
> first_holdout
pred obs rowIndex intercept Resample
1 2756.333 2740 11 TRUE Training010 # only 1 row since 1 step forecast horizon
# Calculate RMSE, Rsquared and MAE for the holdout set
postResample(first_holdout$pred, first_holdout$obs)
> postResample(first_holdout$pred, first_holdout$obs)
RMSE Rsquared MAE
16.33273 NA 16.33273
Мое замешательство здесь было вызвано главным образом тем, что Rsquared был NA. Но так как прогнозируемый горизонт составлял 1 шаг, все удерживающие выборки имеют только одну строку, и, таким образом, Rsquared не может быть рассчитан.