Как это подделка света работает на аэротвисте?
Я пытаюсь прочитать этот урок:
https://aerotwist.com/tutorials/an-introduction-to-shaders-part-2/
но я не могу следить. В основном код создает направленное освещение с помощью шейдеров, которые работают непосредственно на GPU. Это код:
// same name and type as VS
varying vec3 vNormal;
void main() {
// calc the dot product and clamp
// 0 -> 1 rather than -1 -> 1
vec3 light = vec3(0.5,0.2,1.0);
// ensure it's normalized
light = normalize(light);
// calculate the dot product of
// the light to the vertex normal
float dProd = max(0.0, dot(vNormal, light));
// feed into our frag colour
gl_FragColor = vec4(dProd, dProd, dProd, 1.0);
}
В частности, строка, которую я не понимаю, это:
float dProd = max(0.0, dot(vNormal, light));
Как точечное произведение vNormal вершины и света создает направленный свет. Кто-нибудь может объяснить мне схематично. Я не могу получить это. Это выглядит немного волшебства для меня. Я знаю, что в этом вершинном шейдере каждая вершина передается как ввод, который называется нормальным, потому что он представлен в терминах "1", и эта общая переменная затем используется в приведенном выше фрагментном шейдерном коде. Но кроме этого я не понял, как это работает.
PS: Я мог бы попросить автора блога, но он, как я знаю, в двухнедельный отпуск. Так что я подумал, что кто-то с опытом работы в физике или на сайте Three.js может сказать мне.
1 ответ
Модель отражения Ламберта
Для моделирования отражения света в компьютерной графике используется функция двунаправленного распределения отражения (BRDF). BRDF - это функция, которая дает связь между светом, отраженным вдоль исходящего направления, и светом, падающим с входящего направления.
Идеальная диффузная поверхность имеет BRDF, который имеет одинаковое значение для всех падающих и исходящих направлений. Это существенно сокращает вычисления и, таким образом, обычно используется для моделирования диффузных поверхностей, поскольку это физически правдоподобно, даже если в реальном мире нет чистых диффузных материалов. Этот BRDF называется отражением Ламберта, потому что он подчиняется закону косинуса Ламберта.
Ламбертовское отражение часто используется в качестве модели для диффузного отражения. Этот метод заставляет все замкнутые многоугольники (например, треугольник в трехмерной сетке) отражать свет одинаково во всех направлениях при визуализации. Коэффициент диффузии рассчитывается по углу между вектором нормали и вектором света.
f_Lambertian = max( 0.0, dot( N, L )
где N
является нормальным вектором поверхности, и L
вектор к источнику света.
Как это устроено
В общем случае скалярное произведение двух векторов равно косинусу угла между двумя векторами, умноженному на величину (длину) обоих векторов.
dot( A, B ) == length( A ) * length( B ) * cos( angle_A_B )
Отсюда следует, что скалярное произведение двух единичных векторов равно косинусу угла между двумя векторами, поскольку длина единичного вектора равна 1.
uA = normalize( A )
uB = normalize( B )
cos( angle_A_B ) == dot( uA, uB )
Если мы посмотрим на функцию cos(x) между углами от -90° до 90 °, то мы увидим, что она имеет максимум 1 под углом 0 ° и понижается до 0 при углах 90 ° и -90°.
Такое поведение именно то, что мы хотим для модели отражения. Когда нормальный вектор поверхности и направление к источнику света находятся в одном и том же направлении (угол между 0°), мы хотим максимальное отражение. Напротив, если векторы ортонормированы (угол между ними равен 90°), то мы хотим минимума отражения и нам нужен плавный и непрерывный функционал, проходящий между двумя границами 0 ° и 90 °.
Если модель света рассчитывается в вершинном шейдере, отражение рассчитывается для каждого угла примитива. Между примитивами отражения интерполируются в соответствии с его барицентрическими координатами. Посмотрите полученные отражения на сферической поверхности:
Смотрите также:
- GLSL фиксированная функция фрагмент программы замены
- Фононное освещение: добавить зеркальное освещение отдельно или с рассеянным или рассеянным светом?
Пример WebGL: диффузное отражение Ламберта на сфере
(function loadscene() {
var gl, progDraw, vp_size;
var bufSphere = {};
function render(delteMS){
Camera.create();
Camera.vp = vp_size;
gl.viewport( 0, 0, vp_size[0], vp_size[1] );
gl.enable( gl.DEPTH_TEST );
gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );
// set up draw shader
ShaderProgram.Use( progDraw.prog );
ShaderProgram.SetUniformM44( progDraw.prog, "u_projectionMat44", Camera.Perspective() );
ShaderProgram.SetUniformM44( progDraw.prog, "u_viewMat44", Camera.LookAt() );
var modelMat = IdentityMat44()
modelMat = RotateAxis( modelMat, CalcAng( delteMS, 13.0 ), 0 );
modelMat = RotateAxis( modelMat, CalcAng( delteMS, 17.0 ), 1 );
ShaderProgram.SetUniformM44( progDraw.prog, "u_modelMat44", modelMat );
ShaderProgram.SetUniformF3( progDraw.prog, "u_color", [1.0, 0.5, 0.0] );
ShaderProgram.SetUniformF3( progDraw.prog, "u_lightDir", [-4.0, 0.0, -1.0] )
// draw scene
VertexBuffer.Draw( bufSphere );
requestAnimationFrame(render);
}
function resize() {
//vp_size = [gl.drawingBufferWidth, gl.drawingBufferHeight];
vp_size = [window.innerWidth, window.innerHeight]
canvas.width = vp_size[0];
canvas.height = vp_size[1];
}
function initScene() {
canvas = document.getElementById( "canvas");
gl = canvas.getContext( "experimental-webgl" );
if ( !gl )
return null;
progDraw = {}
progDraw.prog = ShaderProgram.Create(
[ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
{ source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
] );
if ( !progDraw.prog )
return null;
progDraw.inPos = gl.getAttribLocation( progDraw.prog, "inPos" );
// create sphere
var layer_size = 16, circum_size = 32;
var rad_circum = 1.0;
var rad_tube = 0.5;
var sphere_pts = [];
sphere_pts.push( 0.0, 0.0, -1.0 );
for ( var i_l = 1; i_l < layer_size; ++ i_l ) {
var angH = (1.0 - i_l / layer_size) * Math.PI;
var h = Math.cos( angH );
var r = Math.sin( angH );
for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
var circumX = Math.cos(2 * Math.PI * i_c / circum_size);
var circumY = Math.sin(2 * Math.PI * i_c / circum_size);
sphere_pts.push( r * circumX, r * circumY, h );
}
}
sphere_pts.push( 0.0, 0.0, 1.0 );
var sphere_inx = [];
for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
sphere_inx.push( i_c+1, 0, (i_c+1) % circum_size + 1 )
}
for ( var i_l = 0; i_l < layer_size-2; ++ i_l ) {
var l1 = i_l * circum_size + 1;
var l2 = (i_l+1) * circum_size + 1
for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
var i_n = (i_c+1) % circum_size;
sphere_inx.push( l1+i_c, l1+i_n, l2+i_c, l1+i_n, l2+i_n, l2+i_c );
}
}
for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
var i_start = 1 + (layer_size-2) * circum_size;
var i_n = (i_c+1) % circum_size;
sphere_inx.push( i_start + i_c, i_start + i_n, sphere_pts.length/3-1 );
}
bufSphere = VertexBuffer.Create(
[ { data : sphere_pts, attrSize : 3, attrLoc : progDraw.inPos } ],
sphere_inx );
window.onresize = resize;
resize();
requestAnimationFrame(render);
}
function Fract( val ) {
return val - Math.trunc( val );
}
function CalcAng( deltaTime, intervall ) {
return Fract( deltaTime / (1000*intervall) ) * 2.0 * Math.PI;
}
function CalcMove( deltaTime, intervall, range ) {
var pos = self.Fract( deltaTime / (1000*intervall) ) * 2.0
var pos = pos < 1.0 ? pos : (2.0-pos)
return range[0] + (range[1] - range[0]) * pos;
}
function EllipticalPosition( a, b, angRag ) {
var a_b = a * a - b * b
var ea = (a_b <= 0) ? 0 : Math.sqrt( a_b );
var eb = (a_b >= 0) ? 0 : Math.sqrt( -a_b );
return [ a * Math.sin( angRag ) - ea, b * Math.cos( angRag ) - eb, 0 ];
}
glArrayType = typeof Float32Array !="undefined" ? Float32Array : ( typeof WebGLFloatArray != "undefined" ? WebGLFloatArray : Array );
function IdentityMat44() {
var m = new glArrayType(16);
m[0] = 1; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = 1; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = 1; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
return m;
};
function RotateAxis(matA, angRad, axis) {
var aMap = [ [1, 2], [2, 0], [0, 1] ];
var a0 = aMap[axis][0], a1 = aMap[axis][1];
var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
var matB = new glArrayType(16);
for ( var i = 0; i < 16; ++ i ) matB[i] = matA[i];
for ( var i = 0; i < 3; ++ i ) {
matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
}
return matB;
}
function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
function Normalize( v ) {
var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
return [ v[0] / len, v[1] / len, v[2] / len ];
}
var Camera = {};
Camera.create = function() {
this.pos = [0, 1.5, 0.0];
this.target = [0, 0, 0];
this.up = [0, 0, 1];
this.fov_y = 90;
this.vp = [800, 600];
this.near = 0.5;
this.far = 100.0;
}
Camera.Perspective = function() {
var fn = this.far + this.near;
var f_n = this.far - this.near;
var r = this.vp[0] / this.vp[1];
var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
var m = IdentityMat44();
m[0] = t/r; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = t; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = -fn / f_n; m[11] = -1;
m[12] = 0; m[13] = 0; m[14] = -2 * this.far * this.near / f_n; m[15] = 0;
return m;
}
Camera.LookAt = function() {
var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
var mx = Normalize( Cross( this.up, mz ) );
var my = Normalize( Cross( mz, mx ) );
var tx = Dot( mx, this.pos );
var ty = Dot( my, this.pos );
var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos );
var m = IdentityMat44();
m[0] = mx[0]; m[1] = my[0]; m[2] = mz[0]; m[3] = 0;
m[4] = mx[1]; m[5] = my[1]; m[6] = mz[1]; m[7] = 0;
m[8] = mx[2]; m[9] = my[2]; m[10] = mz[2]; m[11] = 0;
m[12] = tx; m[13] = ty; m[14] = tz; m[15] = 1;
return m;
}
var ShaderProgram = {};
ShaderProgram.Create = function( shaderList ) {
var shaderObjs = [];
for ( var i_sh = 0; i_sh < shaderList.length; ++ i_sh ) {
var shderObj = this.CompileShader( shaderList[i_sh].source, shaderList[i_sh].stage );
if ( shderObj == 0 )
return 0;
shaderObjs.push( shderObj );
}
var progObj = this.LinkProgram( shaderObjs )
if ( progObj != 0 ) {
progObj.attribIndex = {};
var noOfAttributes = gl.getProgramParameter( progObj, gl.ACTIVE_ATTRIBUTES );
for ( var i_n = 0; i_n < noOfAttributes; ++ i_n ) {
var name = gl.getActiveAttrib( progObj, i_n ).name;
progObj.attribIndex[name] = gl.getAttribLocation( progObj, name );
}
progObj.unifomLocation = {};
var noOfUniforms = gl.getProgramParameter( progObj, gl.ACTIVE_UNIFORMS );
for ( var i_n = 0; i_n < noOfUniforms; ++ i_n ) {
var name = gl.getActiveUniform( progObj, i_n ).name;
progObj.unifomLocation[name] = gl.getUniformLocation( progObj, name );
}
}
return progObj;
}
ShaderProgram.AttributeIndex = function( progObj, name ) { return progObj.attribIndex[name]; }
ShaderProgram.UniformLocation = function( progObj, name ) { return progObj.unifomLocation[name]; }
ShaderProgram.Use = function( progObj ) { gl.useProgram( progObj ); }
ShaderProgram.SetUniformI1 = function( progObj, name, val ) { if(progObj.unifomLocation[name]) gl.uniform1i( progObj.unifomLocation[name], val ); }
ShaderProgram.SetUniformF1 = function( progObj, name, val ) { if(progObj.unifomLocation[name]) gl.uniform1f( progObj.unifomLocation[name], val ); }
ShaderProgram.SetUniformF2 = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform2fv( progObj.unifomLocation[name], arr ); }
ShaderProgram.SetUniformF3 = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform3fv( progObj.unifomLocation[name], arr ); }
ShaderProgram.SetUniformF4 = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform4fv( progObj.unifomLocation[name], arr ); }
ShaderProgram.SetUniformM33 = function( progObj, name, mat ) { if(progObj.unifomLocation[name]) gl.uniformMatrix3fv( progObj.unifomLocation[name], false, mat ); }
ShaderProgram.SetUniformM44 = function( progObj, name, mat ) { if(progObj.unifomLocation[name]) gl.uniformMatrix4fv( progObj.unifomLocation[name], false, mat ); }
ShaderProgram.CompileShader = function( source, shaderStage ) {
var shaderScript = document.getElementById(source);
if (shaderScript)
source = shaderScript.text;
var shaderObj = gl.createShader( shaderStage );
gl.shaderSource( shaderObj, source );
gl.compileShader( shaderObj );
var status = gl.getShaderParameter( shaderObj, gl.COMPILE_STATUS );
if ( !status ) alert(gl.getShaderInfoLog(shaderObj));
return status ? shaderObj : null;
}
ShaderProgram.LinkProgram = function( shaderObjs ) {
var prog = gl.createProgram();
for ( var i_sh = 0; i_sh < shaderObjs.length; ++ i_sh )
gl.attachShader( prog, shaderObjs[i_sh] );
gl.linkProgram( prog );
status = gl.getProgramParameter( prog, gl.LINK_STATUS );
if ( !status ) alert("Could not initialise shaders");
gl.useProgram( null );
return status ? prog : null;
}
var VertexBuffer = {};
VertexBuffer.Create = function( attributes, indices ) {
var buffer = {};
buffer.buf = [];
buffer.attr = []
for ( var i = 0; i < attributes.length; ++ i ) {
buffer.buf.push( gl.createBuffer() );
buffer.attr.push( { size : attributes[i].attrSize, loc : attributes[i].attrLoc } );
gl.bindBuffer( gl.ARRAY_BUFFER, buffer.buf[i] );
gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( attributes[i].data ), gl.STATIC_DRAW );
}
buffer.inx = gl.createBuffer();
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, buffer.inx );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( indices ), gl.STATIC_DRAW );
buffer.inxLen = indices.length;
gl.bindBuffer( gl.ARRAY_BUFFER, null );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
return buffer;
}
VertexBuffer.Draw = function( bufObj ) {
for ( var i = 0; i < bufObj.buf.length; ++ i ) {
gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.buf[i] );
gl.vertexAttribPointer( bufObj.attr[i].loc, bufObj.attr[i].size, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( bufObj.attr[i].loc );
}
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufObj.inx );
gl.drawElements( gl.TRIANGLES, bufObj.inxLen, gl.UNSIGNED_SHORT, 0 );
for ( var i = 0; i < bufObj.buf.length; ++ i )
gl.disableVertexAttribArray( bufObj.attr[i].loc );
gl.bindBuffer( gl.ARRAY_BUFFER, null );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
}
initScene();
})();
html,body {
height: 100%;
width: 100%;
margin: 0;
overflow: hidden;
}
#gui {
position : absolute;
top : 0;
left : 0;
}
<script id="draw-shader-vs" type="x-shader/x-vertex">
precision mediump float;
attribute vec3 inPos;
varying vec3 v_normal;
uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;
void main()
{
vec3 modelNV = mat3( u_modelMat44 ) * normalize( inPos );
vec3 normalV = mat3( u_viewMat44 ) * modelNV;
v_normal = normalV;
vec4 modelPos = u_modelMat44 * vec4( inPos, 1.0 );
vec4 viewPos = u_viewMat44 * modelPos;
gl_Position = u_projectionMat44 * viewPos;
}
</script>
<script id="draw-shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying vec3 v_normal;
uniform vec3 u_lightDir;
uniform vec3 u_color;
void main()
{
vec3 normalV = normalize( v_normal );
vec3 lightV = normalize( -u_lightDir );
float NdotL = max( 0.0, dot( normalV, lightV ) );
vec3 lightCol = (0.2 + 0.8 * NdotL) * u_color;
gl_FragColor = vec4( lightCol.rgb, 1.0 );
}
</script>
<canvas id="canvas" style="border: none;" width="100%" height="100%"></canvas>