Линии сканирования фильтра частиц с openGL
Я реализую фильтр частиц для отслеживания 3D-куба в C++.
Я столкнулся со значительной проблемой при назначении весов для частиц, потому что весы основаны на ошибке в расстоянии (в данном случае) между точкой выборки и пикселем (объяснено ниже).
В настоящее время я могу получать видеопоток с камеры на моем ноутбуке, отображать его на экране и рисовать частицы поверх этого. Также я могу извлечь края объектов, обнаруженных камерой, и найти координаты их контуров.
Вот как определяются координаты контура:
vector<vector<Point>> detectContours(Mat image){
vector<vector<Point>> contoursEdges;
vector<Vec4i> hierarchy;
Mat clone;
clone = image.clone();
Mat contours;
GaussianBlur(clone, contours, Size(5,5), 1);
cvtColor(contours, contours, CV_BGR2GRAY);
Mat cannyEdges;
Canny(contours, cannyEdges, 50, 100, 3);
try{
findContours(cannyEdges, contoursEdges, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE, Point(0,0));
}catch(exception e){
printf("Exception: Contours cannot be found!!!\n");
}
return contoursEdges;
}
Однако, как я уже сказал, частицы рисуются поверх видеопотока (как показано на снимке экрана). Каждая плоскость делится на сетку.
Вот как это делается:
void DrawBox(GLfloat fWidth,GLfloat fHeight,GLfloat fDepth,GLint wslices,GLint dslices,GLint stacks, GLfloat scanSize)
{
glPushAttrib(GL_POLYGON_BIT | GL_ENABLE_BIT | GL_COLOR_BUFFER_BIT) ;
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) ;
glEnable(GL_CULL_FACE); // allow only front surfaces to be visible
int iTopButtonQuads = wslices * dslices * 2;
int iLeftRightQuads = dslices * stacks * 2;
int iFrontBackQuads = wslices * stacks * 2;
float* pfVertices = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
float* pfColors = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
float* pfNormals = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
int iVertexIndex = 0;
GLfloat Xstep = fWidth / wslices;
GLfloat Ystep = fHeight / stacks;
GLfloat Zstep = fDepth / dslices;
GLfloat firstX = fWidth / 2.0f;
GLfloat firstY = fHeight / 2.0f;
GLfloat firstZ = fDepth / 2.0f;
GLfloat currX = 0.0f;
GLfloat currY = 0.0f;
GLfloat currZ = 0.0f;
GLfloat x_status = 0.0f;
GLfloat y_status = 0.0f;
GLfloat z_status = 0.0f;
// the bottom and the top of the box
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, -1.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 0.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX,-firstY,currZ};
float pfVertex1[3] = {currX + Xstep,-firstY,currZ};
float pfVertex2[3] = {currX + Xstep,-firstY,currZ + Zstep};
float pfVertex3[3] = {currX,-firstY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 1.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 1.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX + Xstep,firstY,currZ + Zstep};
float pfVertex1[3] = {currX + Xstep,firstY,currZ};
float pfVertex2[3] = {currX,firstY,currZ};
float pfVertex3[3] = {currX,firstY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
// the front and the back of the box
for (currY = -firstY, y_status = 0.0f; currY < firstY - Ystep / 2.0f ; currY += Ystep, y_status += Ystep)
{
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 0.0f, 1.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 0.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX,currY,firstZ};
float pfVertex1[3] = {currX + Xstep,currY,firstZ};
float pfVertex2[3] = {currX + Xstep,currY + Ystep,firstZ};
float pfVertex3[3] = {currX,currY + Ystep,firstZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 0.0f, -1.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 1.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX + Xstep,currY + Ystep,-firstZ};
float pfVertex1[3] = {currX + Xstep,currY,-firstZ};
float pfVertex2[3] = {currX,currY,-firstZ};
float pfVertex3[3] = {currX,currY + Ystep,-firstZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
// Right side and the left side of the box
for (currY = -firstY, y_status = 0.0f; currY < firstY - Ystep / 2.0f; currY += Ystep, y_status += Ystep)
{
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 1.0f, 0.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 0.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {firstX,currY,currZ};
float pfVertex1[3] = {firstX,currY + Ystep,currZ};
float pfVertex2[3] = {firstX,currY + Ystep,currZ + Zstep};
float pfVertex3[3] = {firstX,currY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { -1.0f, 0.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 1.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {-firstX,currY,currZ};
float pfVertex1[3] = {-firstX,currY,currZ + Zstep};
float pfVertex2[3] = {-firstX,currY + Ystep,currZ + Zstep};
float pfVertex3[3] = {-firstX,currY + Ystep,currZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glColorPointer(3, GL_FLOAT, 0, (void*)pfColors);
glNormalPointer(GL_FLOAT, 0, (void*)pfNormals);
glVertexPointer(3, GL_FLOAT, 0, (void*)pfVertices);
glDrawArrays(GL_QUADS, 0, (iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 4);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
// Get coord of first vertex
float fMinX = pfVertices[0];
float fMinY = pfVertices[1];
float fMinZ = pfVertices[2];
float fMaxX = pfVertices[0];
float fMaxY = pfVertices[1];
float fMaxZ = pfVertices[2];
for (int iVertexIndex = 0; iVertexIndex < (iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 4; iVertexIndex++)
{
int iCurrentIndex = iVertexIndex * 3; // (x y z) per vertex
if (pfVertices[iCurrentIndex] < fMinX)
fMinX = pfVertices[iCurrentIndex];
if (pfVertices[iCurrentIndex + 1] < fMinY)
fMinY = pfVertices[iCurrentIndex + 1];
if (pfVertices[iCurrentIndex + 2] < fMinZ)
fMinZ = pfVertices[iCurrentIndex + 2];
if (pfVertices[iCurrentIndex] > fMaxX)
fMaxX = pfVertices[iCurrentIndex];
if (pfVertices[iCurrentIndex + 1] > fMaxY)
fMaxY = pfVertices[iCurrentIndex + 1];
if (pfVertices[iCurrentIndex + 2] > fMaxZ)
fMaxZ = pfVertices[iCurrentIndex + 2];
}
// Create an axes aligned bounding box
// by simply drawing inflated min-maxes, that we collect
// example of using indexed primitives
glDisable(GL_CULL_FACE);
GLfloat vertices[] = {
fMinX - scanSize, fMaxY + scanSize, fMaxZ + scanSize,
fMaxX + scanSize, fMaxY + scanSize, fMaxZ + scanSize,
fMaxX + scanSize, fMinY - scanSize, fMaxZ + scanSize,
fMinX - scanSize, fMinY - scanSize, fMaxZ + scanSize,
fMinX - scanSize, fMaxY + scanSize, fMinZ - scanSize,
fMaxX + scanSize, fMaxY + scanSize, fMinZ - scanSize,
fMaxX + scanSize, fMinY - scanSize, fMinZ - scanSize,
fMinX - scanSize, fMinY - scanSize, fMinZ - scanSize
};
GLint indices[] = {
0, 1, 2, 3,
4, 5, 1, 0,
3, 2, 6, 7,
5, 4, 7, 6,
1, 5, 6, 2,
4, 0, 3, 7
};
glColor3f(1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (void*)vertices);
glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, (void*)indices);
glDisableClientState(GL_VERTEX_ARRAY);
glEnable(GL_CULL_FACE);
delete [] pfVertices;
delete [] pfNormals;
delete [] pfColors;
glPopAttrib() ;
}
Моя проблема сейчас заключается в следующем:
- Соберите только граничные точки всех шести сеток для каждой частицы (точки выборки)
- Нарисуйте линию сканирования от каждой такой точки размером, скажем, 20 пикселей в обоих направлениях от точки
Вторая точка маркера требуется для того, чтобы найти расстояние между точками выборки и обнаруженными краями, как показано на рисунке ниже.
Это упрощенная версия в 2D. Каждая зеленая линия представляет линию сканирования, а "Dist" - расстояние между точкой выборки и пикселем, найденным на ребре
Если кто-то может предложить решение, как найти расстояние, или, желательно, может опубликовать некоторые фрагменты кода, это будет высоко ценится.