Байесовская категориально-логистическая модель в R2OpenBUGS
Я пытаюсь согласовать категориально-логистическую модель, используя набор данных художников, содержащийся в библиотеке MASS.
Я разделил набор данных на две части, чтобы в будущем можно было прогнозировать значения переменной School, используя логистическую полиномиальную модель базовой категории для оценки взаимосвязи между категориальным откликом School и непрерывными объяснительными переменными. К сожалению, мой код работает или ошибки, даже не пытаясь сделать прогноз.
library(MASS)
set.seed(43)
painters_new<-painters[sample(nrow(painters)) , ] #randomizing rows
painters_pred<-painters_new[50:54,]
painters_new<-painters_new[1:49,]
model<-function(){
#likelihood
for( i in 1:N){
y[i] ~ dcat(p[i,])
#formulating probabilities
p[i,1]<-ebx[i,1]/ebxsum[i]
p[i,2]<-ebx[i,2]/ebxsum[i]
p[i,3]<-ebx[i,3]/ebxsum[i]
p[i,4]<-ebx[i,4]/ebxsum[i]
p[i,5]<-ebx[i,5]/ebxsum[i]
p[i,6]<-ebx[i,6]/ebxsum[i]
p[i,7]<-ebx[i,7]/ebxsum[i]
p[i,8]<-ebx[i,8]/ebxsum[i]
#formulating denominator of probabilities
ebxsum[i]<-ebx[i,1]+ebx[i,2]+ebx[i,3]+ebx[i,4]+ebx[i,5]+ebx[i,6]+ebx[i,7]+ebx[i,8]
#formulating numerator of probabilities
ebx[i,1]<-exp(beta0[1]+beta1[1]*composition[i]+beta2[1]*drawing[i]+beta3[1]*colour[i]+beta4[1]*expression[i])
ebx[i,2]<-exp(beta0[2]+beta1[2]*composition[i]+beta2[2]*drawing[i]+beta3[2]*colour[i]+beta4[2]*expression[i])
ebx[i,3]<-exp(beta0[3]+beta1[3]*composition[i]+beta2[3]*drawing[i]+beta3[3]*colour[i]+beta4[3]*expression[i])
ebx[i,4]<-1 #baseline is Category 4
ebx[i,5]<-exp(beta0[5]+beta1[5]*composition[i]+beta2[5]*drawing[i]+beta3[5]*colour[i]+beta4[5]*expression[i])
ebx[i,6]<-exp(beta0[6]+beta1[6]*composition[i]+beta2[6]*drawing[i]+beta3[6]*colour[i]+beta4[6]*expression[i])
ebx[i,7]<-exp(beta0[7]+beta1[7]*composition[i]+beta2[7]*drawing[i]+beta3[7]*colour[i]+beta4[7]*expression[i])
ebx[i,8]<-exp(beta0[8]+beta1[8]*composition[i]+beta2[8]*drawing[i]+beta3[8]*colour[i]+beta4[8]*expression[i])
}
#priors
beta0[1:3]~dnorm(0,1.0E-06)
beta1[1:3]~dnorm(0,1.0E-06)
beta2[1:3]~dnorm(0,1.0E-06)
beta3[1:3]~dnorm(0,1.0E-06)
beta4[1:3]~dnorm(0,1.0E-06)
beta0[4]<-0
beta1[4]<-0
beta2[4]<-0
beta3[4]<-0
beta4[4]<-0
beta0[5:8]~dnorm(0,1.0E-06)
beta1[5:8]~dnorm(0,1.0E-06)
beta2[5:8]~dnorm(0,1.0E-06)
beta3[5:8]~dnorm(0,1.0E-06)
beta4[5:8]~dnorm(0,1.0E-06)
}
library(R2OpenBUGS)
model.file <- file.path(tempdir(),"model1.txt")
write.model(model, model.file)
y<-as.numeric(painters_new$School)
N<-49
composition<-painters$Composition
drawing<-painters$Drawing
colour<-painters$Colour
expression<-painters$Expression
data<-list("y","N","composition","drawing","colour","expression")
params<-c('beta0','beta1','beta2','beta3','beta4')
inits<-function(){list( beta0=rep(0,8),beta1=rep(0,8),beta2=rep(0,8),beta3=rep(0,8),beta4=rep(0,8))}
out<-bugs(data,inits,params,model.file,n.chains = 3
,n.iter=6000,codaPkg = TRUE,n.burnin = 1000)
Открыв файл log.txt, я получаю следующее сообщение об ошибке:
модель синтаксически верна
данные загружены
ожидаемый многомерный узел
Очевидно, это соответствует ошибке структуры данных: ожидается, что некоторая переменная, которую я использую, будет иметь разные размеры. Хотя я пробовал разные способы определения сущностей, которые я использую, я полностью уверен, что согласно теории содержащиеся узлы имеют правильную форму. Есть ли вероятность того, что BUGS не может работать с категориальными и ожидает от меня масштабирования до многочлена с 1 итерацией?
Есть идеи?
после различных проб и модификаций кажется, что источником проблемы был способ, которым я пытаюсь определить бета-приоры. BUGS не поддерживает обычные трюки с массивами R. Я попробовал некоторые операторы if, чтобы обойти мой путь, и я понял, что обычный способ выражения if на языке BUGS (lol?) Использует 2 функции BUGS, равные (x,z) и шаг (). Так что я сделал свою домашнюю работу о них и переставил весь предыдущий
thing. model<-function(){
#likelihood
for( i in 1:N){
y[i] ~ dcat(p[i,])
#formulating probabilities
p[i,1]<-ebx[i,1]/ebxsum[i]
p[i,2]<-ebx[i,2]/ebxsum[i]
p[i,3]<-ebx[i,3]/ebxsum[i]
p[i,4]<-ebx[i,4]/ebxsum[i]
p[i,5]<-ebx[i,5]/ebxsum[i]
p[i,6]<-ebx[i,6]/ebxsum[i]
p[i,7]<-ebx[i,7]/ebxsum[i]
p[i,8]<-ebx[i,8]/ebxsum[i]
#formulating denominator of probabilities
ebxsum[i]<-ebx[i,1]+ebx[i,2]+ebx[i,3]+ebx[i,4]+ebx[i,5]+ebx[i,6]+ebx[i,7]+ebx[i,8]
#formulating numerator of probabilities
ebx[i,1]<-exp(beta0[1]+beta1[1]*composition[i]+beta2[1]*drawing[i]+beta3[1]*colour[i]+beta4[1]*expression[i])
ebx[i,2]<-exp(beta0[2]+beta1[2]*composition[i]+beta2[2]*drawing[i]+beta3[2]*colour[i]+beta4[2]*expression[i])
ebx[i,3]<-exp(beta0[3]+beta1[3]*composition[i]+beta2[3]*drawing[i]+beta3[3]*colour[i]+beta4[3]*expression[i])
ebx[i,4]<-1 #baseline is Category 4
ebx[i,5]<-exp(beta0[5]+beta1[5]*composition[i]+beta2[5]*drawing[i]+beta3[5]*colour[i]+beta4[5]*expression[i])
ebx[i,6]<-exp(beta0[6]+beta1[6]*composition[i]+beta2[6]*drawing[i]+beta3[6]*colour[i]+beta4[6]*expression[i])
ebx[i,7]<-exp(beta0[7]+beta1[7]*composition[i]+beta2[7]*drawing[i]+beta3[7]*colour[i]+beta4[7]*expression[i])
ebx[i,8]<-exp(beta0[8]+beta1[8]*composition[i]+beta2[8]*drawing[i]+beta3[8]*colour[i]+beta4[8]*expression[i])
}
#priors construction step-like
#f functions
for(j in 1:8){
f_branch[j,1]~dnorm(0,1.0E-6)
f_branch[j,2]<-0
#decision
if_branch[j]<-1+equals(j,4)
beta0[j]<-f_branch[j,if_branch[j]]
beta1[j]<-f_branch[j,if_branch[j]]
beta2[j]<-f_branch[j,if_branch[j]]
beta3[j]<-f_branch[j,if_branch[j]]
beta4[j]<-f_branch[j,if_branch[j]]
}}
library(R2OpenBUGS)
model.file <- file.path(tempdir(),"cat_log.txt")
write.model(model, model.file)
y<-as.numeric(painters_new$School)
N<-49
composition<-painters$Composition
drawing<-painters$Drawing
colour<-painters$Colour
expression<-painters$Expression
data<-list("y","N","composition","drawing","colour","expression")
params<-c('beta0','beta1','beta2','beta3','beta4')
out<-bugs(data,inits=NULL,params,model.file,n.chains = 3
,n.iter=6000,codaPkg = TRUE,n.burnin = 1000)
Так что теперь после дриблинга следующего набора ошибок, я получаю ошибку в R, в то время как файл log.txt не дает мне указание типа ошибки.
model is syntactically correct
data loaded
model compiled
Есть идеи?