Tidyquant пакет и доступ к финансовой информации Tibble
В настоящее время я запускаю следующий код для извлечения из quantmod
Пакет финансовой информации.
library(quantmod)
symbols <- c("HOG", "GOOG", "GE")
tickers <- new.env()
lapply(symbols, getFinancials, env=tickers)
BS <- data.frame(lapply(tickers, function(x) {viewFinancials(x, type= 'BS', period = 'A')}))
IS <- data.frame(lapply(tickers, function(x) {viewFinancials(x, type= 'IS', period = 'A')}))
CF <- data.frame(lapply(tickers, function(x) {viewFinancials(x, type= 'CF', period = 'A')}))
df <- rbind(BS, IS, CF)
df <- t(df)
Это немного грязно, но отсюда я могу почистить данные и продолжить некоторые вычисления. Однако я хочу знать, есть ли более эффективный способ использования tidyquant
пакет, как я хотел бы запустить это над многими символами тикера, и в настоящее время он ломается, когда quantmod
Пакет не может загрузить / найти финансовую информацию для определенного тикера.
Я работаю с;
library(tidyquant)
library(dplyr)
symbols <- c("HOG", "GOOG", "GE")
stock_financials <- symbols %>%
tq_get(get = "financials")
stock_financials$annual
Я вижу, что данные - это тиббл внутри тиббла, но как можно извлечь информацию, как раньше, или как мне легче получить доступ к данным тиббла для stock_financials$annual
?
Модификация и использование
filter(stock_financials, type == "BS") %>% unnest()
Из этого ответа, похоже, не работает для меня.
1 ответ
Вот простое решение с gather
а также unnest
от tidyr
пакет. Как только вы сделаете gather()
а также unnest()
Затем вы можете фильтровать по любому разделу и комбинации символов, которые вы хотите.
> library(tidyquant)
> library(dplyr)
>
> symbols <- c("HOG", "GOOG", "GE")
>
> stock_financials <- symbols %>%
+ tq_get(get = "financials")
>
> stock_financials
# A tibble: 9 x 4
symbol type annual quarter
<chr> <chr> <list> <list>
1 HOG BS <tibble [168 x 4]> <tibble [210 x 4]>
2 HOG CF <tibble [76 x 4]> <tibble [76 x 4]>
3 HOG IS <tibble [196 x 4]> <tibble [245 x 4]>
4 GOOG BS <tibble [168 x 4]> <tibble [210 x 4]>
5 GOOG CF <tibble [76 x 4]> <tibble [76 x 4]>
6 GOOG IS <tibble [196 x 4]> <tibble [245 x 4]>
7 GE BS <tibble [168 x 4]> <tibble [210 x 4]>
8 GE CF <tibble [76 x 4]> <tibble [76 x 4]>
9 GE IS <tibble [196 x 4]> <tibble [245 x 4]>
>
> stock_financials %>%
+ gather(key = "key", value = "value", annual, quarter) %>%
+ unnest()
# A tibble: 2,913 x 7
symbol type key group category date value
<chr> <chr> <chr> <int> <chr> <date> <dbl>
1 HOG BS annual 1 Cash & Equivalents 2017-12-31 688.
2 HOG BS annual 1 Cash & Equivalents 2016-12-31 760.
3 HOG BS annual 1 Cash & Equivalents 2015-12-31 722.
4 HOG BS annual 1 Cash & Equivalents 2014-12-31 907.
5 HOG BS annual 2 Short Term Investments 2017-12-31 0.
6 HOG BS annual 2 Short Term Investments 2016-12-31 5.52
7 HOG BS annual 2 Short Term Investments 2015-12-31 45.2
8 HOG BS annual 2 Short Term Investments 2014-12-31 57.3
9 HOG BS annual 3 Cash and Short Term Investments 2017-12-31 688.
10 HOG BS annual 3 Cash and Short Term Investments 2016-12-31 766.
# ... with 2,903 more rows