Сюжет питона
У меня есть следующий список:
[6, 4, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 3, 2, 3, 3, 2, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 3, 2, 1, 0, 0, 0, 1, 2]
Я хочу нанести на график частоту каждого объекта с питоном и провести анализ степенных законов.
Но я не могу понять, как я могу построить список с ylabel частотой и xlabel числа в списке.
Я думал создать диктат с частотами и построить значения словаря, но таким образом я не могу поместить числа в xlabel.
Любой совет?
4 ответа
Я думаю, что вы правы по поводу словаря:
>>> import matplotlib.pyplot as plt
>>> from collections import Counter
>>> c = Counter([6, 4, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 3, 2, 3, 3, 2, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 3, 2, 1, 0, 0, 0, 1, 2])
>>> sorted(c.items())
[(0, 50), (1, 30), (2, 9), (3, 8), (4, 1), (5, 1), (6, 1)]
>>> plt.plot(*zip(*sorted(c.items()))
... )
[<matplotlib.lines.Line2D object at 0x36a9990>]
>>> plt.show()
Здесь есть несколько интересных вещей. zip(*sorted(c.items()))
вернет что-то вроде [(0,1,2,3,4,5,6),(50,30,9,8,1,1,1)]
, Мы можем распаковать это используя *
оператор так что plt.plot
видит 2 аргумента - (0,1,2,3,4,5,6)
а также (50,30,9,8,1,1,1)
, которые используются в качестве x
а также y
Значения при построении соответственно.
Что касается подгонки данных, scipy
вероятно, будет иметь некоторую помощь здесь. В частности, посмотрите на следующие примеры. (один из примеров даже использует степенной закон).
Используйте пакет: powerlaw
import powerlaw
d=[6, 4, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 3,2, 3, 3, 2, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1,0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,3, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 3, 2, 1, 0, 0, 0, 1, 2]
fit = powerlaw.Fit(numpy.array(d)+1,xmin=1,discrete=True)
fit.power_law.plot_pdf( color= 'b',linestyle='--',label='fit ccdf')
fit.plot_pdf( color= 'b')
print('alpha= ',fit.power_law.alpha,' sigma= ',fit.power_law.sigma)
альфа = 1,85885487521 сигма = 0,0858854875209
Это позволяет правильно строить, подбирать и анализировать данные. В качестве специального метода он подходит для распределения по степенному закону с дискретными данными.
это может быть установлено с: pip install powerlaw
y = np.bincount([6, 4, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 3, 2, 3, 3, 2, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 3, 2, 1, 0, 0, 0, 1, 2])
x = np.nonzero(y)[0]
plt.bar(x,y)
import matplotlib.pyplot as plt
data = [6, 4, 0, 0, 0, 0, 0, 1, 3, 1, 0, 3, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 3, 2, 3, 3, 2, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 2, 3, 2, 1, 0, 0, 0, 1, 2]
plt.hist(data, bins=range(max(data)+2))
plt.show()