Как рассчитать CI для NRI и IDI (события / не события) - пакет SurvidINRI

Я могу рассчитать непрерывный NRI и IDI по Survidinri. Расчеты NRI и IDI, данные pbc Мой вопрос заключается в том, как рассчитать доверительный интервал, например, для IDI (не события / события)?

#calculate IDI / NRI use pbc data & survIDINRI
library(survival)
library(survIDINRI)
data(pbc)

#transplant (1) and death (2) are considered events, and marked 1
pbc <- within(pbc, {
event <- as.numeric(status %in% c(1,2))

#Create a survival vector
Surv <- Surv(time, event)
})

#change variables to numeric
select.vars=names(pbc)
pbc[,select.vars]=lapply(pbc[,select.vars],as.numeric)

res.IDI.INF <- IDI.INF(indata = pbc[,c("time","event")],
                   covs0 = pbc[,c("age","sex")],           # age sex model
                   covs1 = pbc[,c("age","sex","albumin")], # age sex albumin model
                   t0 = 10 * 365.25,
                   npert = 300, npert.rand = NULL, seed1 = NULL, alpha = 0.05)

#M1 IDI; M2 continuous NRI; M3 median improvement

IDI.INF.OUT(res.IDI.INF)

#     Est.  Lower Upper p-value
# M1 0.101  0.028 0.169   0.020
# M2 0.254 -0.002 0.430   0.053
# M3 0.094  0.008 0.177   0.040

#m1.est; A vector with 3 elements. 
#The 1st element is the point estimate of the IDI and
#the 2nd element is the average of risk score in “event” group
#the 3rd element is the average of risk score in “non-event” group.
#The 1st element #is equal to the 2nd element minus the 3rd element.

# IDI, 2nd element, 3rd element
res.IDI.INF$m1.est
[1]  0.10091475  0.04957480 -0.05133995

Я правильно понимаю

 0.10091475 is IDI
 0.04957480 is IDI (events)
 actually +0.05133995 is IDI (non events)? 

Как я могу рассчитать КИ?`

0 ответов

Другие вопросы по тегам