Как сделать правильный размер обучения и тестового теста, чтобы соответствовать модели для встраивания elmo
Я получил ошибку при подборе модели вложения elmo с обучающим набором измерения x_tr=(43163, 50) и y_tr= (43163, 50, 1) как:
InvalidArgumentError: Incompatible shapes: [1600] vs. [32,50]
[[{{node metrics/acc/Equal}} = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](metrics/acc/Reshape, metrics/acc/Cast)]].
как решить эту ошибку?
я попытался решить, сделав обучающую выборку делимой на размер партии.
Учебный комплект для подгонки модели:
X_tr=np.array(X_tr)
print(X_tr.shape)
y_tr = np.array(y_tr).reshape(len(y_tr), max_len, 1)
print(y_tr.shape)
(43163, 50)
(43163, 50, 1)
Создание модели:
input_text = Input(shape=(max_len,), dtype=tf.string)
embedding = Lambda(ElmoEmbedding, output_shape=(None, 1024))(input_text)
x = Bidirectional(LSTM(units=512, return_sequences=True,
recurrent_dropout=0.2, dropout=0.2))(embedding)
x_rnn = Bidirectional(LSTM(units=512, return_sequences=True,
recurrent_dropout=0.2, dropout=0.2))(x)
x = add([x, x_rnn]) # residual connection to the first biLSTM
out = TimeDistributed(Dense(n_tags, activation="softmax"))(x)
model = Model(input_text, out)
составление модели:
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
примерка модели:
fit_model = model.fit(np.array(X_tr), np.array(y_tr).reshape(len(y_tr), max_len, 1), validation_split=0.1,
batch_size=batch_size, epochs=5, verbose=1)
ОШИБКА:
InvalidArgumentError: Incompatible shapes: [1600] vs. [32,50]
[[{{node metrics/acc/Equal}} = Equal[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](metrics/acc/Reshape, metrics/acc/Cast)]]
Expected result could be:
Train on 38816 samples, validate on 4320 samples
Epoch 1/5
38816/38816 [==============================] - 433s 11ms/step - loss: 0.0625 - acc: 0.9818 - val_loss: 0.0459 - val_acc: 0.9858
Epoch 2/5
38816/38816 [==============================] - 430s 11ms/step - loss: 0.0404 - acc: 0.9869 - val_loss: 0.0421 - val_acc: 0.9865
Epoch 3/5
38816/38816 [==============================] - 429s 11ms/step - loss: 0.0334 - acc: 0.9886 - val_loss: 0.0426 - val_acc: 0.9868
Epoch 4/5
38816/38816 [==============================] - 429s 11ms/step - loss: 0.0275 - acc: 0.9904 - val_loss: 0.0431 - val_acc: 0.9868
Epoch 5/5
38816/38816 [==============================] - 430s 11ms/step - loss: 0.0227 - acc: 0.9920 - val_loss: 0.0461 - val_acc: 0.9867
1 ответ
Решение
Решено : я решил эту проблему, удалив метрики =['точность'], но почему эта ошибка в игре метрики точности мне до сих пор неизвестна. Если кто-нибудь знает это, пожалуйста, помогите мне