Подготовьте модель SKlearn с Isolation Forest для развертывания в Google Cloud
Я новичок в мире машинного обучения и работаю над проектом, в котором я обучил модель обнаружения мошенничества с использованием SKlearn. Я обучаю модель следующим образом:
from sklearn.metrics import classification_report, accuracy_score
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
# define a random state
state = 1
# define the outlier detection method
classifiers = {
"Isolation Forest": IsolationForest(max_samples=len(X),
contamination=outlier_fraction,
random_state=state),
"Local Outlier Factor": LocalOutlierFactor(
n_neighbors = 20,
contamination = outlier_fraction)
}
# fit the model
n_outliers = len(Fraud)
for i, (clf_name, clf) in enumerate(classifiers.items()):
# fit te data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
scores_pred = clf.negative_outlier_factor_
else:
clf.fit(X)
scores_pred = clf.decision_function(X)
y_pred = clf.predict(X)
# Reshape the prediction values to 0 for valid and 1 for fraudulent
y_pred[y_pred == 1] = 0
y_pred[y_pred == -1] = 1
n_errors = (y_pred != Y).sum()
# run classification metrics
print('{}:{}'.format(clf_name, n_errors))
print(accuracy_score(Y, y_pred ))
print(classification_report(Y, y_pred ))
И он возвращает следующий вывод:
Isolation Forest:7
0.93
precision recall f1-score support
0 0.97 0.96 0.96 95
1 0.33 0.40 0.36 5
avg / total 0.94 0.93 0.93 100
Local Outlier Factor:9
0.91
precision recall f1-score support
0 0.96 0.95 0.95 95
1 0.17 0.20 0.18 5
avg / total 0.92 0.91 0.91 100
Теперь запутанная часть - это развертывание, после многих усилий я решил развернуть и обслуживать его с помощью веб-службы фляги, но не понимаю, как я могу передать входные данные моему predict
метод здесь, чтобы получить прогноз?
Есть ли что-то было сделано неправильно?
Как я могу передать вход на мой predict
метод здесь?
Помоги мне, пожалуйста! Любой ресурс для пошагового руководства по его развертыванию в облаке Google будет очень признателен.
Заранее спасибо!