Как смоделировать розовый шум в R
Я знаю, что белый шум может быть достигнут путем обработки выходных rnorm()
как временная серия. Любые предложения о том, как имитировать розовый шум?
1 ответ
Решение
Пакет tuneR
имеет noise
функция, которая может генерировать волновой объект, который является белым или розовым шумом:
require(tuneR)
w <- noise(kind = c("white"))
p <- noise(kind = c("pink"))
par(mfrow=c(2,1))
plot(w,main="white noise")
plot(p,main="pink noise")
РЕДАКТИРОВАТЬ: я понял, что метод выше не генерирует вектор (до). Брутальный способ конвертировать его в вектор - добавить код ниже:
writeWave(p,"p.wav")#writes pink noise on your hard drive
require(audio)#loads `audio` package to use `load.wave` function
p.vec <- load.wave("path/to/p.wav")#this will load pink noise as a vector
Как сказал @mbq, вы можете просто использовать p@left, чтобы получить вектор, вместо сохранения и чтения файла wav. С другой стороны, вы можете напрямую использовать функцию, генерирующую временную серию в tuneR:
TK95 <- function(N, alpha = 1){
f <- seq(from=0, to=pi, length.out=(N/2+1))[-c(1,(N/2+1))] # Fourier frequencies
f_ <- 1 / f^alpha # Power law
RW <- sqrt(0.5*f_) * rnorm(N/2-1) # for the real part
IW <- sqrt(0.5*f_) * rnorm(N/2-1) # for the imaginary part
fR <- complex(real = c(rnorm(1), RW, rnorm(1), RW[(N/2-1):1]),
imaginary = c(0, IW, 0, -IW[(N/2-1):1]), length.out=N)
# Those complex numbers that are to be back transformed for Fourier Frequencies 0, 2pi/N, 2*2pi/N, ..., pi, ..., 2pi-1/N
# Choose in a way that frequencies are complex-conjugated and symmetric around pi
# 0 and pi do not need an imaginary part
reihe <- fft(fR, inverse=TRUE) # go back into time domain
return(Re(reihe)) # imaginary part is 0
}
и это отлично работает:
par(mfrow=c(3,1))
replicate(3,plot(TK95(1000,1),type="l",ylab="",xlab="time"))