NMT LSTM дает неверный ответ и большой убыток

Пишу нейросеть для перевода текстов с русского на английский, но столкнулся с проблемой, что моя нейросеть дает большой проигрыш, а так же очень далекий от правильного ответа. Ниже показан LSTM, который я создаю с помощью Keras:

      def make_model(in_vocab, out_vocab, in_timesteps, out_timesteps, n):
model = Sequential()
model.add(Embedding(in_vocab, n, input_length=in_timesteps, mask_zero=True))
model.add(LSTM(n))
model.add(Dropout(0.3))
model.add(RepeatVector(out_timesteps))
model.add(LSTM(n, return_sequences=True))
model.add(Dropout(0.3))
model.add(Dense(out_vocab, activation='softmax'))
model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss='sparse_categorical_crossentropy')
return model

А также представлен процесс обучения:

      Epoch 1/10
3/3 [==============================] - 5s 1s/step - loss: 8.3635 - accuracy: 0.0197 - val_loss: 8.0575 - val_accuracy: 0.0563
Epoch 2/10
3/3 [==============================] - 2s 806ms/step - loss: 7.9505 - accuracy: 0.0334 - val_loss: 8.2927 - val_accuracy: 0.0743
Epoch 3/10
3/3 [==============================] - 2s 812ms/step - loss: 7.7977 - accuracy: 0.0349 - val_loss: 8.2959 - val_accuracy: 0.0571
Epoch 4/10
3/3 [==============================] - 3s 825ms/step - loss: 7.6700 - accuracy: 0.0389 - val_loss: 8.5628 - val_accuracy: 0.0751
Epoch 5/10
3/3 [==============================] - 3s 829ms/step - loss: 7.5595 - accuracy: 0.0411 - val_loss: 8.5854 - val_accuracy: 0.0743
Epoch 6/10
3/3 [==============================] - 3s 807ms/step - loss: 7.4604 - accuracy: 0.0406 - val_loss: 8.7633 - val_accuracy: 0.0743
Epoch 7/10
3/3 [==============================] - 2s 815ms/step - loss: 7.3475 - accuracy: 0.0436 - val_loss: 8.9103 - val_accuracy: 0.0743
Epoch 8/10
3/3 [==============================] - 3s 825ms/step - loss: 7.2548 - accuracy: 0.0455 - val_loss: 9.0493 - val_accuracy: 0.0721
Epoch 9/10
3/3 [==============================] - 2s 814ms/step - loss: 7.1751 - accuracy: 0.0449 - val_loss: 9.0740 - val_accuracy: 0.0788
Epoch 10/10
3/3 [==============================] - 3s 831ms/step - loss: 7.1132 - accuracy: 0.0479 - val_loss: 9.2443 - val_accuracy: 0.0773 

И параметры, которые я передаю для обучения:

      model = make_model(# the size of tokenized words
               russian_vocab_size,
               english_vocab_size,
               # maximum sentence lengths
               max_russian_sequence_length,
               max_english_sequence_length,
               512)
model.fit(preproc_russian_sentences, # all tokenized Russian offers that are transmitted in the format shape (X, Y)
      preproc_english_sentences, # all tokenized English offers that are transmitted in the format shape (X, Y, 1)
      epochs=10,
      batch_size=1024,
      validation_split=0.2,
      callbacks=None,
      verbose=1)

Заранее спасибо.

0 ответов

Другие вопросы по тегам