Обычная регрессия наименьших квадратов дает неверный прогноз
Я использую statsmodels OLS, чтобы разместить ряд точек на одной линии:
import statsmodels.api as sm
Y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15]
X = [[73.759999999999991], [73.844999999999999], [73.560000000000002],
[73.209999999999994], [72.944999999999993], [73.430000000000007],
[72.950000000000003], [73.219999999999999], [72.609999999999999],
[74.840000000000003], [73.079999999999998], [74.125], [74.75],
[74.760000000000005]]
ols = sm.OLS(Y, X)
r = ols.fit()
preds = r.predict()
print preds
И я получаю следующие результаты:
[ 7.88819844 7.89728869 7.86680961 7.82937917 7.80103898 7.85290687
7.8015737 7.83044861 7.76521269 8.00369809 7.81547643 7.92723304
7.99407312 7.99514256]
Это около 10 раз. Что я делаю неправильно? Я попытался добавить константу, которая просто увеличивает значения в 1000 раз. Я не очень разбираюсь в статистике, так что, может быть, мне нужно что-то сделать с данными?
1 ответ
Я думаю, что вы изменили свой ответ и свой предсказатель, как предложил Майкл Майер в своем комментарии. Если вы строите данные с прогнозами из вашей модели, вы получите что-то вроде этого:
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
Y = np.array([1,2,3,4,5,6,7,8,9,11,12,13,14,15])
X = np.array([ 73.76 , 73.845, 73.56 , 73.21 , 72.945, 73.43 , 72.95 ,
73.22 , 72.61 , 74.84 , 73.08 , 74.125, 74.75 , 74.76 ])
Design = np.column_stack((np.ones(14), X))
ols = sm.OLS(Y, Design).fit()
preds = ols.predict()
plt.plot(X, Y, 'ko')
plt.plot(X, preds, 'k-')
plt.show()
Если вы переключите X и Y, что, как я думаю, вам нужно, вы получите:
Design2 = np.column_stack((np.ones(14), Y))
ols2 = sm.OLS(X, Design2).fit()
preds2 = ols2.predict()
print preds2
[ 73.1386399 73.21305699 73.28747409 73.36189119 73.43630829
73.51072539 73.58514249 73.65955959 73.73397668 73.88281088
73.95722798 74.03164508 74.10606218 74.18047927]
plt.plot(Y, X, 'ko')
plt.plot(Y, preds2, 'k-')
plt.show()