Непоследовательное поведение прогноза при использовании запаздывающих xreg в R fabletools
Это вопрос, который я открыл как проблему, но не получил ответа от автора пакета, поэтому подумал, что задам вопрос здесь. Спасибо!
Я замечаю некоторые несоответствия при прогнозировании с запаздыванием xreg. В частности, прогнозы на h <= лаговый период. Похоже, что исторические данные, предоставленные исходной модели, не добавляются к новым данным перед созданием прогноза. В приведенном ниже примере я использую пример lag = 2 из fpp3. Первый прогноз идентичен прогнозу, созданному в книге. Во втором прогнозе я увеличиваю
library(fpp3)
#> ── Attaching packages ──────────────────────────────────────────── fpp3 0.4.0 ──
#> ✓ tibble 3.1.2 ✓ tsibble 1.0.1
#> ✓ dplyr 1.0.6 ✓ tsibbledata 0.3.0
#> ✓ tidyr 1.1.3 ✓ feasts 0.2.1
#> ✓ lubridate 1.7.10 ✓ fable 0.3.1
#> ✓ ggplot2 3.3.3
#> ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
#> x lubridate::date() masks base::date()
#> x dplyr::filter() masks stats::filter()
#> x tsibble::intersect() masks base::intersect()
#> x tsibble::interval() masks lubridate::interval()
#> x dplyr::lag() masks stats::lag()
#> x tsibble::setdiff() masks base::setdiff()
#> x tsibble::union() masks base::union()
library(fabletools)
library(fable)
library(dplyr)
library(tsibble)
fit <- insurance %>%
# Restrict data so models use same fitting period
# Estimate models
model(
lag2 = ARIMA(Quotes ~ pdq(d = 0) +
TVadverts + lag(TVadverts) +
lag(TVadverts, 2))
)
insurance_future <- new_data(insurance, 20) %>%
mutate(TVadverts = 8)
# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc1 <- fit %>%
forecast(insurance_future)
# Manually pre-pend historic advert data to future data to ensure presence of
# lagged regressors
fc2 <- fit %>%
forecast(bind_rows(select(insurance, -Quotes), insurance_future)) %>%
filter_index(as.character(min(insurance_future$Month)) ~ .)
print(fc1)
#> # A fable: 20 x 5 [1M]
#> # Key: .model [1]
#> .model Month Quotes .mean TVadverts
#> <chr> <mth> <dist> <dbl> <dbl>
#> 1 lag2 2005 May N(13, 0.23) 13.0 8
#> 2 lag2 2005 Jun N(13, 0.59) 13.0 8
#> 3 lag2 2005 Jul N(13, 0.72) 13.2 8
#> 4 lag2 2005 Aug N(13, 0.72) 13.2 8
#> 5 lag2 2005 Sep N(13, 0.72) 13.2 8
#> 6 lag2 2005 Oct N(13, 0.72) 13.2 8
#> 7 lag2 2005 Nov N(13, 0.72) 13.2 8
#> 8 lag2 2005 Dec N(13, 0.72) 13.2 8
#> 9 lag2 2006 Jan N(13, 0.72) 13.2 8
#> 10 lag2 2006 Feb N(13, 0.72) 13.2 8
#> 11 lag2 2006 Mar N(13, 0.72) 13.2 8
#> 12 lag2 2006 Apr N(13, 0.72) 13.2 8
#> 13 lag2 2006 May N(13, 0.72) 13.2 8
#> 14 lag2 2006 Jun N(13, 0.72) 13.2 8
#> 15 lag2 2006 Jul N(13, 0.72) 13.2 8
#> 16 lag2 2006 Aug N(13, 0.72) 13.2 8
#> 17 lag2 2006 Sep N(13, 0.72) 13.2 8
#> 18 lag2 2006 Oct N(13, 0.72) 13.2 8
#> 19 lag2 2006 Nov N(13, 0.72) 13.2 8
#> 20 lag2 2006 Dec N(13, 0.72) 13.2 8
print(fc2)
#> # A fable: 20 x 5 [1M]
#> # Key: .model [1]
#> .model Month Quotes .mean TVadverts
#> <chr> <mth> <dist> <dbl> <dbl>
#> 1 lag2 2005 May N(14, 0.72) 13.5 8
#> 2 lag2 2005 Jun N(13, 0.72) 13.3 8
#> 3 lag2 2005 Jul N(13, 0.72) 13.2 8
#> 4 lag2 2005 Aug N(13, 0.72) 13.2 8
#> 5 lag2 2005 Sep N(13, 0.72) 13.2 8
#> 6 lag2 2005 Oct N(13, 0.72) 13.2 8
#> 7 lag2 2005 Nov N(13, 0.72) 13.2 8
#> 8 lag2 2005 Dec N(13, 0.72) 13.2 8
#> 9 lag2 2006 Jan N(13, 0.72) 13.2 8
#> 10 lag2 2006 Feb N(13, 0.72) 13.2 8
#> 11 lag2 2006 Mar N(13, 0.72) 13.2 8
#> 12 lag2 2006 Apr N(13, 0.72) 13.2 8
#> 13 lag2 2006 May N(13, 0.72) 13.2 8
#> 14 lag2 2006 Jun N(13, 0.72) 13.2 8
#> 15 lag2 2006 Jul N(13, 0.72) 13.2 8
#> 16 lag2 2006 Aug N(13, 0.72) 13.2 8
#> 17 lag2 2006 Sep N(13, 0.72) 13.2 8
#> 18 lag2 2006 Oct N(13, 0.72) 13.2 8
#> 19 lag2 2006 Nov N(13, 0.72) 13.2 8
#> 20 lag2 2006 Dec N(13, 0.72) 13.2 8
waldo::compare(fc1, fc2)
#> `old$Quotes[[1]]$mu`: 13.0
#> `new$Quotes[[1]]$mu`: 13.5
#>
#> `old$Quotes[[1]]$sigma`: 0.5
#> `new$Quotes[[1]]$sigma`: 0.8
#>
#> `old$Quotes[[2]]$mu`: 13.0
#> `new$Quotes[[2]]$mu`: 13.3
#>
#> `old$Quotes[[2]]$sigma`: 0.77
#> `new$Quotes[[2]]$sigma`: 0.85
#>
#> `old$.mean[1:5]`: 13.0 13.0 13.2 13.2 13.2
#> `new$.mean[1:5]`: 13.5 13.3 13.2 13.2 13.2
Любопытно, что когда я создаю новые переменные с задержкой вручную (а не в формуле), результаты модели соответствуют «базовому случаю» из fpp3(в моем примере).
insurance_manlag <- insurance %>%
mutate(TVadverts1 = lag(TVadverts),
TVadverts2 = lag(TVadverts, 2))
fit <- insurance_manlag %>%
# Restrict data so models use same fitting period
# Estimate models
model(
lag2 = ARIMA(Quotes ~ pdq(d = 0) +
TVadverts + TVadverts1 + TVadverts2)
)
insurance_man_future <- append_row(insurance, n = 20) %>%
replace_na(replace = list(TVadverts = 8)) %>%
mutate(TVadverts1 = lag(TVadverts),
TVadverts2 = lag(TVadverts, 2)) %>%
slice_tail(n = 20)
# Forecast as shown in https://otexts.com/fpp3/lagged-predictors.html
fc3 <- fit %>%
forecast(insurance_man_future)
waldo::compare(fc1$Quotes, fc3$Quotes)
#> ✓ No differences
waldo::compare(fc2$Quotes, fc3$Quotes)
#> `old[[1]]$mu`: 13.5
#> `new[[1]]$mu`: 13.0
#>
#> `old[[1]]$sigma`: 0.8
#> `new[[1]]$sigma`: 0.5
#>
#> `old[[2]]$mu`: 13.3
#> `new[[2]]$mu`: 13.0
#>
#> `old[[2]]$sigma`: 0.85
#> `new[[2]]$sigma`: 0.77
Создано 2021-06-02 пакетом REPEX (v2.0.0)
Это воспроизведение заставляет меня поверить, что это правильно, а не. Если да, то что происходит в
1 ответ
В
{fable}
, модели, производящие прогнозы, сохраняют всю информацию, необходимую для составления прогнозов. При использовании рекомендованного интерфейса для получения
fc1
(как показано в книге), модель придерживается двух последних значений:
TVadverts
. Хотя они не были необходимы для оценки модели, они необходимы для составления первой пары прогнозов.
При использовании
forecast()
функция с предполагаемым поведением модели для создания прогнозов для каждого момента времени в
new_data
. Я считаю, что прогнозирование по временным точкам, не относящимся к концу ряда, еще не реализовано, поэтому я изменю это, чтобы получить ошибку.
Вообще говоря, при использовании
lag()
функции в формуле модели нет необходимости добавлять исторические данные. Модели сохранят и запомнят необходимые значения для прогнозирования.