Ошибка при попытке сделать прогнозы с помощью байесовской модели pgmpy
У меня есть набор данных в файле Excel, и я пытаюсь обучить байесовскую модель, чтобы делать некоторые прогнозы на основе данных. Я использую pandas для фрейма данных и pgmpy для байесовской модели. Я могу заставить модель делать прогнозы на основе данных из набора данных, отбрасывая столбцы, которые я хочу прогнозировать. Но как только я пытаюсь делать прогнозы для нового вручную созданного фрейма данных, я получаю эту трассировку стека:
C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\factors\discrete\DiscreteFactor.py:518: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers
warn(
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\externals\loky\process_executor.py", line 431, in _process_worker
r = call_item()
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\externals\loky\process_executor.py", line 285, in __call__
return self.fn(*self.args, **self.kwargs)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\_parallel_backends.py", line 595, in __call__
return self.func(*args, **kwargs)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\inference\ExactInference.py", line 367, in map_query
final_distribution = self._variable_elimination(
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\inference\ExactInference.py", line 160, in _variable_elimination
working_factors = self._get_working_factors(evidence)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\inference\ExactInference.py", line 46, in _get_working_factors
factor_reduced = factor.reduce(
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\factors\discrete\DiscreteFactor.py", line 537, in reduce
phi.values = phi.values[tuple(slice_)]
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "C:\Users\viviana\Documents\GitHub\biblionetAI\src\main\java\it\unisa\c07\biblionet\moduloIntelligenzaArtificiale\questionarioNaiveBayesian.py", line 95, in <module>
predicted = model.predict(to_predict)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\pgmpy\models\BayesianModel.py", line 579, in predict
pred_values = Parallel(n_jobs=n_jobs)(
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\parallel.py", line 1054, in __call__
self.retrieve()
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\parallel.py", line 933, in retrieve
self._output.extend(job.get(timeout=self.timeout))
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\site-packages\joblib\_parallel_backends.py", line 542, in wrap_future_result
return future.result(timeout=timeout)
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 433, in result
return self.__get_result()
File "C:\Users\viviana\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\_base.py", line 389, in __get_result
raise self._exception
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
Это код Python:
dataset = pd.DataFrame(excel.values, columns=['user_answer', 'user_answer1', 'user_answer2',
'user_answer3', 'user_answer4', 'car_genre', 'car_genre1',
'car_genre2', 'genre'])
model = BayesianModel([('user_answer', 'car_genre'), ('user_answer', 'car_genre1'), ('user_answer', 'car_genre2'),
('user_answer1', 'car_genre'), ('user_answer1', 'car_genre1'), ('user_answer1', 'car_genre2'),
('user_answer2', 'car_genre'), ('user_answer2', 'car_genre1'), ('user_answer2', 'car_genre2'),
('user_answer3', 'car_genre'), ('user_answer3', 'car_genre1'), ('user_answer3', 'car_genre2'),
('user_answer4', 'car_genre'), ('user_answer4', 'car_genre1'), ('user_answer4', 'car_genre2'),
('car_genre', 'genre'), ('car_genre1', 'genre'), ('car_genre2', 'genre')])
train_number = int(math.ceil((len(dataset) / 100) * 90))-1
train_data = dataset[:train_number]
predict_data = dataset[train_number:]
model.fit(train_data, BayesianEstimator)
predict_data.pop('genre')
predict_data.pop('car_genre')
predict_data.pop('car_genre1')
predict_data.pop('car_genre2')
#This succeded
predicted = model.predict(predict_data)
answ1 = "Amaro"
answ2 = "Riflessivo, logico, osservatore"
answ3 = "Cinema, teatro, SerieTV"
answ4 = "Non li guardo perché non mi interessa il genere"
pt = pd.DataFrame({"user_answer": answ1, "user_answer1": answ2,
"user_answer2": answ3, "user_answer3": answ4}, index=[0])
#This fails and gives me the error
print(model.predict(pt))
Что вызвало ошибку? Есть ли особый способ форматирования данных? Как исправить?