Сохранение данных датчика в файл CSV
Я новичок в разработке для Android, я разработал этот код на основе предыдущего кода, относящегося к Mr.liwatiz, чтобы найти ориентацию по датчику, я добавил файл writeCSV для хранения данных, Приложение работает и файл создан, но хранилища данных нет! Поэтому, пожалуйста, в чем проблема. мой код ясно ниже
public class MainActivity extends Activity implements SensorEventListener, RadioGroup.OnCheckedChangeListener{
private SensorManager mSensorManager = null;
// angular speeds from gyro
private float[] gyro = new float[3];
// rotation matrix from gyro data
private float[] gyroMatrix = new float[9];
// orientation angles from gyro matrix
private float[] gyroOrientation = new float[3];
// magnetic field vector
private float[] magnet = new float[3];
// accelerometer vector
private float[] accel = new float[3];
// orientation angles from accel and magnet
private float[] accMagOrientation = new float[3];
// final orientation angles from sensor fusion
private float[] fusedOrientation = new float[3];
// accelerometer and magnetometer based rotation matrix
private float[] rotationMatrix = new float[9];
public static final float EPSILON = 0.000000001f;
private static final float NS2S = 1.0f / 1000000.0f;
private int timestamp;
private boolean initState = true;
public static final int TIME_CONSTANT = 30;
public static final float FILTER_COEFFICIENT = 0.98f;
private Timer fuseTimer = new Timer();
// The following members are only for displaying the sensor output.
public Handler mHandler;
private RadioGroup mRadioGroup;
private TextView mAzimuthView;
private TextView mPitchView;
private TextView mRollView;
private int radioSelection;
DecimalFormat d = new DecimalFormat("#.##");
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
gyroOrientation[0] = 0.0f;
gyroOrientation[1] = 0.0f;
gyroOrientation[2] = 0.0f;
// initialise gyroMatrix with identity matrix
gyroMatrix[0] = 1.0f; gyroMatrix[1] = 0.0f; gyroMatrix[2] = 0.0f;
gyroMatrix[3] = 0.0f; gyroMatrix[4] = 1.0f; gyroMatrix[5] = 0.0f;
gyroMatrix[6] = 0.0f; gyroMatrix[7] = 0.0f; gyroMatrix[8] = 1.0f;
// get sensorManager and initialise sensor listeners
mSensorManager = (SensorManager) this.getSystemService(SENSOR_SERVICE);
initListeners();
// wait for one second until gyroscope and magnetometer/accelerometer
// data is initialised then scedule the complementary filter task
fuseTimer.scheduleAtFixedRate(new calculateFusedOrientationTask(),
1000, TIME_CONSTANT);
// GUI stuff
mHandler = new Handler();
radioSelection = 0;
d.setRoundingMode(RoundingMode.HALF_UP);
d.setMaximumFractionDigits(3);
d.setMinimumFractionDigits(3);
mRadioGroup = (RadioGroup)findViewById(R.id.radioGroup1);
mAzimuthView = (TextView)findViewById(R.id.textView4);
mPitchView = (TextView)findViewById(R.id.textView5);
mRollView = (TextView)findViewById(R.id.textView6);
mRadioGroup.setOnCheckedChangeListener(this);
}
@Override
public void onStop() {
super.onStop();
// unregister sensor listeners to prevent the activity from draining the device's battery.
mSensorManager.unregisterListener(this);
}
@Override
protected void onPause() {
super.onPause();
// unregister sensor listeners to prevent the activity from draining the device's battery.
mSensorManager.unregisterListener(this);
}
@Override
public void onResume() {
super.onResume();
// restore the sensor listeners when user resumes the application.
initListeners();
}
// This function registers sensor listeners for the accelerometer, magnetometer and gyroscope.
public void initListeners(){
mSensorManager.registerListener(this,
mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
SensorManager.SENSOR_DELAY_NORMAL);
mSensorManager.registerListener(this,
mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE),
SensorManager.SENSOR_DELAY_NORMAL);
mSensorManager.registerListener(this,
mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
SensorManager.SENSOR_DELAY_NORMAL);
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}
public void writeToCsvGy(String x,String y,String z) throws IOException {
Calendar c = Calendar.getInstance();
File folder = new File(Environment.getExternalStorageDirectory() + "/TollCulator");
boolean success = true;
if (!folder.exists()) {
success = folder.mkdir();
}
if (success) {
// Do something on success
String csv = "/storage/sdcard0/project/GyroscopeValue.csv";
FileWriter file_writer = new FileWriter(csv,true);
String s= c.get(Calendar.YEAR)+","+c.get(Calendar.MONTH)+","+c.get(Calendar.DATE)+","+c.get(Calendar.HOUR)+","+c.get(Calendar.MINUTE)+","+c.get(Calendar.SECOND)+","+ c.get(Calendar.MILLISECOND)+","+x + ","+y+","+z+"\n";
file_writer.append(s);
file_writer.close();
}
}
@Override
public void onSensorChanged(SensorEvent event) {
switch(event.sensor.getType()) {
case Sensor.TYPE_ACCELEROMETER:
// copy new accelerometer data into accel array and calculate orientation
System.arraycopy(event.values, 0, accel, 0, 3);
calculateAccMagOrientation();
break;
case Sensor.TYPE_GYROSCOPE:
// process gyro data
gyroFunction(event);
break;
case Sensor.TYPE_MAGNETIC_FIELD:
// copy new magnetometer data into magnet array
System.arraycopy(event.values, 0, magnet, 0, 3);
break;
}
}
// calculates orientation angles from accelerometer and magnetometer output
public void calculateAccMagOrientation() {
if(SensorManager.getRotationMatrix(rotationMatrix, null, accel, magnet)) {
SensorManager.getOrientation(rotationMatrix, accMagOrientation);
}
}
// This function is borrowed from the Android reference
// at http://developer.android.com/reference/android/hardware/SensorEvent.html#values
// It calculates a rotation vector from the gyroscope angular speed values.
private void getRotationVectorFromGyro(float[] gyroValues,
float[] deltaRotationVector,
float timeFactor)
{
float[] normValues = new float[3];
// Calculate the angular speed of the sample
float omegaMagnitude =
(float)Math.sqrt(gyroValues[0] * gyroValues[0] +
gyroValues[1] * gyroValues[1] +
gyroValues[2] * gyroValues[2]);
// Normalize the rotation vector if it's big enough to get the axis
if(omegaMagnitude > EPSILON) {
normValues[0] = gyroValues[0] / omegaMagnitude;
normValues[1] = gyroValues[1] / omegaMagnitude;
normValues[2] = gyroValues[2] / omegaMagnitude;
}
// Integrate around this axis with the angular speed by the timestep
// in order to get a delta rotation from this sample over the timestep
// We will convert this axis-angle representation of the delta rotation
// into a quaternion before turning it into the rotation matrix.
float thetaOverTwo = omegaMagnitude * timeFactor;
float sinThetaOverTwo = (float)Math.sin(thetaOverTwo);
float cosThetaOverTwo = (float)Math.cos(thetaOverTwo);
deltaRotationVector[0] = sinThetaOverTwo * normValues[0];
deltaRotationVector[1] = sinThetaOverTwo * normValues[1];
deltaRotationVector[2] = sinThetaOverTwo * normValues[2];
deltaRotationVector[3] = cosThetaOverTwo;
}
// This function performs the integration of the gyroscope data.
// It writes the gyroscope based orientation into gyroOrientation.
public void gyroFunction(SensorEvent event) {
// don't start until first accelerometer/magnetometer orientation has been acquired
if (accMagOrientation == null)
return;
// initialisation of the gyroscope based rotation matrix
if(initState) {
float[] initMatrix = new float[9];
initMatrix = getRotationMatrixFromOrientation(accMagOrientation);
float[] test = new float[3];
SensorManager.getOrientation(initMatrix, test);
gyroMatrix = matrixMultiplication(gyroMatrix, initMatrix);
initState = false;
}
// copy the new gyro values into the gyro array
// convert the raw gyro data into a rotation vector
float[] deltaVector = new float[4];
if(timestamp != 0) {
final float dT = (event.timestamp - timestamp) * NS2S;
System.arraycopy(event.values, 0, gyro, 0, 3);
getRotationVectorFromGyro(gyro, deltaVector, dT / 2.0f);
}
// measurement done, save current time for next interval
switch ( timestamp = (int) event.timestamp ) {
}
// convert rotation vector into rotation matrix
float[] deltaMatrix = new float[9];
SensorManager.getRotationMatrixFromVector(deltaMatrix, deltaVector);
// apply the new rotation interval on the gyroscope based rotation matrix
gyroMatrix = matrixMultiplication(gyroMatrix, deltaMatrix);
// get the gyroscope based orientation from the rotation matrix
SensorManager.getOrientation(gyroMatrix, gyroOrientation);
}
private float[] getRotationMatrixFromOrientation(float[] o) {
float[] xM = new float[9];
float[] yM = new float[9];
float[] zM = new float[9];
float sinX = (float)Math.sin(o[1]);
float cosX = (float)Math.cos(o[1]);
float sinY = (float)Math.sin(o[2]);
float cosY = (float)Math.cos(o[2]);
float sinZ = (float)Math.sin(o[0]);
float cosZ = (float)Math.cos(o[0]);
// rotation about x-axis (pitch)
xM[0] = 1.0f; xM[1] = 0.0f; xM[2] = 0.0f;
xM[3] = 0.0f; xM[4] = cosX; xM[5] = sinX;
xM[6] = 0.0f; xM[7] = -sinX; xM[8] = cosX;
// rotation about y-axis (roll)
yM[0] = cosY; yM[1] = 0.0f; yM[2] = sinY;
yM[3] = 0.0f; yM[4] = 1.0f; yM[5] = 0.0f;
yM[6] = -sinY; yM[7] = 0.0f; yM[8] = cosY;
// rotation about z-axis (azimuth)
zM[0] = cosZ; zM[1] = sinZ; zM[2] = 0.0f;
zM[3] = -sinZ; zM[4] = cosZ; zM[5] = 0.0f;
zM[6] = 0.0f; zM[7] = 0.0f; zM[8] = 1.0f;
// rotation order is y, x, z (roll, pitch, azimuth)
float[] resultMatrix = matrixMultiplication(xM, yM);
resultMatrix = matrixMultiplication(zM, resultMatrix);
return resultMatrix;
}
private float[] matrixMultiplication(float[] A, float[] B) {
float[] result = new float[9];
result[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6];
result[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7];
result[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8];
result[3] = A[3] * B[0] + A[4] * B[3] + A[5] * B[6];
result[4] = A[3] * B[1] + A[4] * B[4] + A[5] * B[7];
result[5] = A[3] * B[2] + A[4] * B[5] + A[5] * B[8];
result[6] = A[6] * B[0] + A[7] * B[3] + A[8] * B[6];
result[7] = A[6] * B[1] + A[7] * B[4] + A[8] * B[7];
result[8] = A[6] * B[2] + A[7] * B[5] + A[8] * B[8];
return result;
}
class calculateFusedOrientationTask extends TimerTask {
public void run() {
float oneMinusCoeff = 1.0f - FILTER_COEFFICIENT;
/*
* Fix for 179? <--> -179? transition problem:
* Check whether one of the two orientation angles (gyro or accMag) is negative while the other one is positive.
* If so, add 360? (2 * math.PI) to the negative value, perform the sensor fusion, and remove the 360? from the result
* if it is greater than 180?. This stabilizes the output in positive-to-negative-transition cases.
*/
// azimuth
if (gyroOrientation[0] < -0.5 * Math.PI && accMagOrientation[0] > 0.0) {
fusedOrientation[0] = (float) (FILTER_COEFFICIENT * (gyroOrientation[0] + 2.0 * Math.PI) + oneMinusCoeff * accMagOrientation[0]);
fusedOrientation[0] -= (fusedOrientation[0] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (accMagOrientation[0] < -0.5 * Math.PI && gyroOrientation[0] > 0.0) {
fusedOrientation[0] = (float) (FILTER_COEFFICIENT * gyroOrientation[0] + oneMinusCoeff * (accMagOrientation[0] + 2.0 * Math.PI));
fusedOrientation[0] -= (fusedOrientation[0] > Math.PI)? 2.0 * Math.PI : 0;
}
else {
fusedOrientation[0] = FILTER_COEFFICIENT * gyroOrientation[0] + oneMinusCoeff * accMagOrientation[0];
}
// pitch
if (gyroOrientation[1] < -0.5 * Math.PI && accMagOrientation[1] > 0.0) {
fusedOrientation[1] = (float) (FILTER_COEFFICIENT * (gyroOrientation[1] + 2.0 * Math.PI) + oneMinusCoeff * accMagOrientation[1]);
fusedOrientation[1] -= (fusedOrientation[1] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (accMagOrientation[1] < -0.5 * Math.PI && gyroOrientation[1] > 0.0) {
fusedOrientation[1] = (float) (FILTER_COEFFICIENT * gyroOrientation[1] + oneMinusCoeff * (accMagOrientation[1] + 2.0 * Math.PI));
fusedOrientation[1] -= (fusedOrientation[1] > Math.PI)? 2.0 * Math.PI : 0;
}
else {
fusedOrientation[1] = FILTER_COEFFICIENT * gyroOrientation[1] + oneMinusCoeff * accMagOrientation[1];
}
// roll
if (gyroOrientation[2] < -0.5 * Math.PI && accMagOrientation[2] > 0.0) {
fusedOrientation[2] = (float) (FILTER_COEFFICIENT * (gyroOrientation[2] + 2.0 * Math.PI) + oneMinusCoeff * accMagOrientation[2]);
fusedOrientation[2] -= (fusedOrientation[2] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (accMagOrientation[2] < -0.5 * Math.PI && gyroOrientation[2] > 0.0) {
fusedOrientation[2] = (float) (FILTER_COEFFICIENT * gyroOrientation[2] + oneMinusCoeff * (accMagOrientation[2] + 2.0 * Math.PI));
fusedOrientation[2] -= (fusedOrientation[2] > Math.PI)? 2.0 * Math.PI : 0;
}
else {
fusedOrientation[2] = FILTER_COEFFICIENT * gyroOrientation[2] + oneMinusCoeff * accMagOrientation[2];
}
// overwrite gyro matrix and orientation with fused orientation
// to comensate gyro drift
gyroMatrix = getRotationMatrixFromOrientation(fusedOrientation);
System.arraycopy(fusedOrientation, 0, gyroOrientation, 0, 3);
// update sensor output in GUI
mHandler.post(updateOreintationDisplayTask);
}
}
// **************************** GUI FUNCTIONS *********************************
@Override
public void onCheckedChanged(RadioGroup group, int checkedId) {
switch(checkedId) {
case R.id.radio0:
radioSelection = 0;
break;
case R.id.radio1:
radioSelection = 1;
break;
case R.id.radio2:
radioSelection = 2;
break;
}
}
public void updateOreintationDisplay() {
switch(radioSelection) {
case 0:
mAzimuthView.setText(d.format(accMagOrientation[0] * 180/Math.PI) + '?');
mPitchView.setText(d.format(accMagOrientation[1] * 180/Math.PI) + '?');
mRollView.setText(d.format(accMagOrientation[2] * 180/Math.PI) + '?');
try {
writeToCsv((d.format(accMagOrientation[0] * 180/Math.PI) + '?'),(d.format(accMagOrientation[1] * 180/Math.PI)+ '?'),(d.format(accMagOrientation[2] * 180/Math.PI) + '?'));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
break;
case 1:
mAzimuthView.setText(d.format(gyroOrientation[0] * 180/Math.PI) + '?');
mPitchView.setText(d.format(gyroOrientation[1] * 180/Math.PI) + '?');
mRollView.setText(d.format(gyroOrientation[2] * 180/Math.PI) + '?');
try {
writeToCsv((d.format(gyroOrientation[0] * 180/Math.PI) + '?'),(d.format(gyroOrientation[1] * 180/Math.PI)+ '?'),(d.format(gyroOrientation[2] * 180/Math.PI) + '?'));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
break;
case 2:
mAzimuthView.setText(d.format(fusedOrientation[0] * 180/Math.PI) + '?');
mPitchView.setText(d.format(fusedOrientation[1] * 180/Math.PI) + '?');
mRollView.setText(d.format(fusedOrientation[2] * 180/Math.PI) + '?');
try {
writeToCsv((d.format(fusedOrientation[0] * 180/Math.PI) + '?'),(d.format(fusedOrientation[1] * 180/Math.PI) + '?'),(d.format(fusedOrientation[2] * 180/Math.PI) + '?'));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
break;
}
}
private void writeToCsv(String x, String y, String z) throws IOException {
Calendar c = Calendar.getInstance();
// File path = getFilesDir();
File folder = new File(getFilesDir() + "/TollCulator");
boolean success = true;
if (! folder.exists()) {
success = folder.mkdir();
}
if (success) {
// Do something on success
String csv = "data.csv";
FileWriter file_writer = new FileWriter(csv,true);
String s= c.get(Calendar.YEAR)+","+c.get(Calendar.MONTH)+","+c.get(Calendar.DATE)+","+c.get(Calendar.HOUR)+","+c.get(Calendar.MINUTE)+","+c.get(Calendar.SECOND)+","+ c.get(Calendar.MILLISECOND)+","+x + ","+y+","+z+"\n";
file_writer.append(s);
file_writer.close();
}
}
private Runnable updateOreintationDisplayTask = new Runnable() {
public void run() {
updateOreintationDisplay();
}
};
}
1 ответ
Попробуйте с помощью приведенного ниже кода создать файл CSV и сохранить данные в CSV.
Ссылка: https://sourceforge.net/projects/opencsv/files/opencsv/
Для больше: посмотрите на это
String csv = (Environment.getExternalStorageDirectory().getAbsolutePath() + "/MyCsvFile.csv"); // Here csv file name is MyCsvFile.csv
//by Hiting button csv will create inside phone storage.
buttonAdd.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
CSVWriter writer = null;
try {
writer = new CSVWriter(new FileWriter(csv));
List<String[]> data = new ArrayList<String[]>();
data.add(new String[]{"Country", "Capital"});
data.add(new String[]{"India", "New Delhi"});
data.add(new String[]{"United States", "Washington D.C"});
data.add(new String[]{"Germany", "Berlin"});
writer.writeAll(data); // data is adding to csv
writer.close();
callRead();
} catch (IOException e) {
e.printStackTrace();
}
}
});