Gluoncv - модель Finetune Faster-RCNN

Я пытался настроить Faster-RCNN в своем пользовательском наборе данных и следовал соответствующему руководству. Как упоминалось в конце, руководство предназначено для использования с моделями SSD, и я пытался изменить его, включив блоки F-RCNN из файлов train_faster_rcnn.py.

Основное различие с файлом train_faster_rcnn.py заключается в том, что мне нужно выполнить точную настройку моего набора данных, поэтому я изменил функцию, чтобы получить набор данных, чтобы читать мои собственные файлы.rec вместо загрузки COCO, вок или чего-то подобного. Я жестко запрограммировал переменные, которые должны быть переданы в качестве начальных аргументов, и передал их обучающей функции. В остальном я использовал другие блоки кода из исходного файла. Вот что у меня есть сейчас:

import time
import os
import logging
import mxnet as mx
from mxnet import autograd, gluon
import gluoncv as gcv
from mxboard import SummaryWriter
from gluoncv.data.batchify import FasterRCNNTrainBatchify, Tuple, Append
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform, \
    FasterRCNNDefaultValTransform
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.parallel import Parallelizable, Parallel
from gluoncv.utils.metrics.rcnn import RPNAccMetric, RPNL1LossMetric, RCNNAccMetric, \
    RCNNL1LossMetric


def main():
    ## try to use GPU for training
    # try:
    #   ctx = [mx.gpu(1)]
    # except:
    #   ctx = [mx.cpu()]

    ctx = [mx.cpu(0)]

    # network
    kwargs = {}
    module_list = []

    ## whether to use feature pyramid network
    use_fpn = False
    if use_fpn:
        module_list.append('fpn')

    for param in net.collect_params().values():
        if param._data is not None:
            continue
        param.initialize()
    net.collect_params().reset_ctx(ctx)

    # output log file
    log_file = open(f'{saved_weights_path}{project_name}_{model_name}_log_file.txt', 'w')
    log_file.write("Epoch".rjust(8))
    for class_name in classes:
        log_file.write(f"{class_name:>15}")
    log_file.write("Total".rjust(15))
    log_file.write("\n")
    # summary file for tensorboard
    sw = SummaryWriter(logdir=saved_weights_path+'logs/', flush_secs=30)

    # prepare data
    data_shape = 512
    train_dataset = gcv.data.RecordFileDetection(f'custom_dataset/train_{project_name}.rec', coord_normalized=True)
    val_dataset  = gcv.data.RecordFileDetection(f'custom_dataset/test_{project_name}.rec', coord_normalized=True)
    eval_metric = VOC07MApMetric(iou_thresh=0.5, class_names=classes)
    # COCO metrics seem to work only on COCO dataset, while custom dataset is a RecordFileDetection file!
    # eval_metric = COCODetectionMetric(val_dataset, '_eval', data_shape=(data_shape, data_shape))

    # create data batches from dataset (net, train_dataset, data_shape, batch_size, num_workers):
    train_data, val_data = get_dataloader(net, train_dataset, val_dataset, FasterRCNNDefaultTrainTransform,
    FasterRCNNDefaultValTransform, batch_size, len(ctx), use_fpn, num_workers=0)
    print(f"train dataloader -> {len(train_data)}")
    print(f"test dataloader -> {len(val_data)}")

    # training
    train(net, model_name, train_data, val_data, eval_metric, batch_size, ctx, lr=0.001, wd=0.0005, momentum=0.9, lr_decay=0.1, lr_decay_epoch='', lr_warmup=1000, lr_warmup_factor=1. / 3., start_epoch=0, epochs=100, log_interval=100, val_interval=1)




def get_dataloader(net, train_dataset, val_dataset, train_transform, val_transform, batch_size,
                   num_shards, use_fpn, num_workers):
    """Get dataloader."""
    train_bfn = FasterRCNNTrainBatchify(net, num_shards)
    if hasattr(train_dataset, 'get_im_aspect_ratio'):
        im_aspect_ratio = train_dataset.get_im_aspect_ratio()
    else:
        im_aspect_ratio = [1.] * len(train_dataset)
    train_sampler = \
        gcv.nn.sampler.SplitSortedBucketSampler(im_aspect_ratio, batch_size,
                                                num_parts = 1,
                                                part_index = 0,
                                                shuffle=True)
    train_loader = mx.gluon.data.DataLoader(train_dataset.transform(
        train_transform(net.short, net.max_size, net, ashape=net.ashape, multi_stage=use_fpn)),
        batch_sampler=train_sampler, batchify_fn=train_bfn, num_workers=num_workers)
    val_bfn = Tuple(*[Append() for _ in range(3)])
    short = net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
    # validation use 1 sample per device
    val_loader = mx.gluon.data.DataLoader(
        val_dataset.transform(val_transform(short, net.max_size)), num_shards, False,
        batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers)
    return train_loader, val_loader


class ForwardBackwardTask(Parallelizable):
    def __init__(self, net, optimizer, rpn_cls_loss, rpn_box_loss, rcnn_cls_loss, rcnn_box_loss,
                 mix_ratio):
        super(ForwardBackwardTask, self).__init__()
        self.net = net
        self._optimizer = optimizer
        self.rpn_cls_loss = rpn_cls_loss
        self.rpn_box_loss = rpn_box_loss
        self.rcnn_cls_loss = rcnn_cls_loss
        self.rcnn_box_loss = rcnn_box_loss
        self.mix_ratio = mix_ratio

    def forward_backward(self, x):
        data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks = x
        with autograd.record():
            gt_label = label[:, :, 4:5]
            gt_box = label[:, :, :4]
            cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors, cls_targets, \
            box_targets, box_masks, _ = net(data, gt_box, gt_label)
            # losses of rpn
            rpn_score = rpn_score.squeeze(axis=-1)
            num_rpn_pos = (rpn_cls_targets >= 0).sum()
            rpn_loss1 = self.rpn_cls_loss(rpn_score, rpn_cls_targets,
                                          rpn_cls_targets >= 0) * rpn_cls_targets.size / num_rpn_pos
            rpn_loss2 = self.rpn_box_loss(rpn_box, rpn_box_targets,
                                          rpn_box_masks) * rpn_box.size / num_rpn_pos
            # rpn overall loss, use sum rather than average
            rpn_loss = rpn_loss1 + rpn_loss2
            # losses of rcnn
            num_rcnn_pos = (cls_targets >= 0).sum()
            rcnn_loss1 = self.rcnn_cls_loss(cls_pred, cls_targets,
                                            cls_targets.expand_dims(-1) >= 0) * cls_targets.size / \
                         num_rcnn_pos
            rcnn_loss2 = self.rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / \
                         num_rcnn_pos
            rcnn_loss = rcnn_loss1 + rcnn_loss2
            # overall losses
            total_loss = rpn_loss.sum() * self.mix_ratio + rcnn_loss.sum() * self.mix_ratio

            rpn_loss1_metric = rpn_loss1.mean() * self.mix_ratio
            rpn_loss2_metric = rpn_loss2.mean() * self.mix_ratio
            rcnn_loss1_metric = rcnn_loss1.mean() * self.mix_ratio
            rcnn_loss2_metric = rcnn_loss2.mean() * self.mix_ratio
            rpn_acc_metric = [[rpn_cls_targets, rpn_cls_targets >= 0], [rpn_score]]
            rpn_l1_loss_metric = [[rpn_box_targets, rpn_box_masks], [rpn_box]]
            rcnn_acc_metric = [[cls_targets], [cls_pred]]
            rcnn_l1_loss_metric = [[box_targets, box_masks], [box_pred]]

            total_loss.backward()

        return rpn_loss1_metric, rpn_loss2_metric, rcnn_loss1_metric, rcnn_loss2_metric, \
               rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, rcnn_l1_loss_metric



def train(net, model_name, train_data, val_data, eval_metric, batch_size, ctx, lr, wd, momentum, lr_decay, lr_decay_epoch, lr_warmup, lr_warmup_factor, start_epoch, epochs, log_interval, val_interval):
    """Training pipeline"""
    kv_store = 'local'
    net.collect_params().setattr('grad_req', 'null')
    net.collect_train_params().setattr('grad_req', 'write')
    optimizer_params = {'learning_rate': lr, 'wd': wd, 'momentum': momentum}
    trainer = gluon.Trainer(
        net.collect_train_params(),  # fix batchnorm, fix first stage, etc...
        'sgd',
        optimizer_params,
        update_on_kvstore=None, kvstore=kv_store)


    # lr decay policy
    lr_decay = float(lr_decay)
    lr_steps = sorted([float(ls) for ls in lr_decay_epoch.split(',') if ls.strip()])
    lr_warmup = float(lr_warmup)  # avoid int division

    # TODO(zhreshold) losses?
    rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
    rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.)  # == smoothl1
    rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
    rcnn_box_loss = mx.gluon.loss.HuberLoss()  # == smoothl1
    metrics = [mx.metric.Loss('RPN_Conf'),
               mx.metric.Loss('RPN_SmoothL1'),
               mx.metric.Loss('RCNN_CrossEntropy'),
               mx.metric.Loss('RCNN_SmoothL1'), ]

    rpn_acc_metric = RPNAccMetric()
    rpn_bbox_metric = RPNL1LossMetric()
    rcnn_acc_metric = RCNNAccMetric()
    rcnn_bbox_metric = RCNNL1LossMetric()
    metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric]

    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_file_path = model_name + '_train.log'
    log_dir = os.path.dirname(log_file_path)
    if log_dir and not os.path.exists(log_dir):
        os.makedirs(log_dir)
    fh = logging.FileHandler(log_file_path)
    logger.addHandler(fh)
    logger.info('Start training from [Epoch {}]'.format(start_epoch))
    best_map = [0]
    for epoch in range(start_epoch, epochs):
        mix_ratio = 1.0
        rcnn_task = ForwardBackwardTask(net, trainer, rpn_cls_loss, rpn_box_loss, rcnn_cls_loss,
                                        rcnn_box_loss, mix_ratio=1.0)
        executor = Parallel(1, rcnn_task)
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = trainer.learning_rate * lr_decay
            lr_steps.pop(0)
            trainer.set_learning_rate(new_lr)
            logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
        for metric in metrics:
            metric.reset()
        tic = time.time()
        btic = time.time()
        base_lr = trainer.learning_rate
        rcnn_task.mix_ratio = mix_ratio
        for i, batch in enumerate(train_data):
            if epoch == 0 and i <= lr_warmup:
                # adjust based on real percentage
                new_lr = base_lr * get_lr_at_iter(i / lr_warmup, lr_warmup_factor)
                if new_lr != trainer.learning_rate:
                    if i % log_interval == 0:
                        logger.info(
                            '[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr))
                    trainer.set_learning_rate(new_lr)
            batch = split_and_load(batch, ctx_list=ctx)
            metric_losses = [[] for _ in metrics]
            add_losses = [[] for _ in metrics2]
            if executor is not None:
                for data in zip(*batch):
                    executor.put(data)
            for j in range(len(ctx)):
                if executor is not None:
                    result = executor.get()
                else:
                    result = rcnn_task.forward_backward(list(zip(*batch))[0])
                for k in range(len(metric_losses)):
                    metric_losses[k].append(result[k])
                for k in range(len(add_losses)):
                    add_losses[k].append(result[len(metric_losses) + k])
            for metric, record in zip(metrics, metric_losses):
                metric.update(0, record)
            for metric, records in zip(metrics2, add_losses):
                for pred in records:
                    metric.update(pred[0], pred[1])
            trainer.step(batch_size)

            # update metrics
            if log_interval and not (i + 1) % log_interval:
                msg = ','.join(
                    ['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2])
                logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format(
                    epoch, i, log_interval * batch_size / (time.time() - btic), msg))
                btic = time.time()

        msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
        logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format(
            epoch, (time.time() - tic), msg))
        if not (epoch + 1) % val_interval:
            # consider reduce the frequency of validation to save time
            map_name, mean_ap = validate(net, val_data, ctx, eval_metric)
            val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
            logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
            current_map = float(mean_ap[-1])
        else:
            current_map = 0.
        save_params(net, logger, best_map, current_map, epoch, 1,
                    model_name)


def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix):
    current_map = float(current_map)
    if current_map > best_map[0]:
        logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format(
            epoch, current_map, best_map, '{:s}_best.params'.format(prefix)))
        best_map[0] = current_map
        net.save_parameters('{:s}_best.params'.format(prefix))
        with open(prefix + '_best_map.log', 'a') as f:
            f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map))
    if save_interval and (epoch + 1) % save_interval == 0:
        logger.info('[Epoch {}] Saving parameters to {}'.format(
            epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)))
        net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))


def split_and_load(batch, ctx_list):
    """Split data to 1 batch each device."""
    new_batch = []
    for i, data in enumerate(batch):
        if isinstance(data, (list, tuple)):
            new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
        else:
            new_data = [data.as_in_context(ctx_list[0])]
        new_batch.append(new_data)
    return new_batch


def validate(net, val_data, ctx, eval_metric):
    """Test on validation dataset."""
    clipper = gcv.nn.bbox.BBoxClipToImage()
    eval_metric.reset()
    net.hybridize(static_alloc=False)
    for batch in val_data:
        batch = split_and_load(batch, ctx_list=ctx)
        det_bboxes = []
        det_ids = []
        det_scores = []
        gt_bboxes = []
        gt_ids = []
        gt_difficults = []
        for x, y, im_scale in zip(*batch):
            # get prediction results
            ids, scores, bboxes = net(x)
            det_ids.append(ids)
            det_scores.append(scores)
            # clip to image size
            det_bboxes.append(clipper(bboxes, x))
            # rescale to original resolution
            im_scale = im_scale.reshape((-1)).asscalar()
            det_bboxes[-1] *= im_scale
            # split ground truths
            gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
            gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
            gt_bboxes[-1] *= im_scale
            gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None)

        # update metric
        for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids,
                                                                        det_scores, gt_bboxes,
                                                                        gt_ids, gt_difficults):
            eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff)
    return eval_metric.get()


def get_lr_at_iter(alpha, lr_warmup_factor=1. / 3.):
    return lr_warmup_factor * (1 - alpha) + alpha



if __name__ == "__main__":
    # prepare model
    model_name = "faster_rcnn_resnet50_v1b_coco"
    ## this will be used to automatically determine input and output file names
    project_name = "natak_all"
    classes = ['ball', 'bb_ball', 'drum', 'guitar', 'koshi_bell', 'massager', 'ring', 'snake', 'tinsel']
    batch_size = 8
    # pre-trained model, reset network to predict new class
    net = gcv.model_zoo.get_model(model_name, pretrained=True)
    # net = gcv.model_zoo.get_model(model_name, classes=classes, pretrained=False, transfer='coco')
    net.reset_class(classes)
    # folder where trained model will be saved
    saved_weights_path = f"saved_weights/{project_name}_{model_name}/"
    if not os.path.exists(saved_weights_path):
        os.makedirs(saved_weights_path)

    main()

Проблема в том, что когда я пытаюсь запустить его, я получаю сообщение об ошибке:

mxnet.base.MXNetError: MXNetError: Shape inconsistent, Provided = [1,128], inferred shape=[8,128]

итак, похоже, я неправильно загружаю данные. Какие-либо предложения?

0 ответов

Другие вопросы по тегам