Расчет положения спутника с использованием Runge-Kutta 4
Моя проблема связана с методом Рунге-Кутты 4 (RK4) и правильными шагами итерации, необходимыми для вектора состояния орбитального спутника. Приведенный ниже код (на Python) описывает движение на основе описания по этой ссылке ( http://www.navipedia.net/index.php/GLONASS_Satellite_Coordinates_Computation):
if total_step_number != 0:
for i in range(1, total_step_number+1):
#Calculate k1
k1[0] = (-cs.GM_GLONASS * XYZ[0] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[0] * (1 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[0] + (cs.OMEGAE_DOT**2 * XYZ[0]) + (2 * cs.OMEGAE_DOT * XYZDot[1])
k1[1] = (-cs.GM_GLONASS * XYZ[1] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[1] * (1 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[1] + (cs.OMEGAE_DOT**2 * XYZ[1]) - (2 * cs.OMEGAE_DOT * XYZDot[0])
k1[2] = (-cs.GM_GLONASS * XYZ[2] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[2] * (3 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[2]
#Intermediate step to bridge k1 to k2
XYZ2[0] = XYZ[0] + (XYZDot[0] * h / 2) + (k1[0] * h**2 / 8)
XYZDot2[0] = XYZDot[0] + (k1[0] * h / 2)
XYZ2[1] = XYZ[1] + (XYZDot[1] * h / 2) + (k1[1] * h**2 / 8)
XYZDot2[1] = XYZDot[1] + (k1[1] * h / 2)
XYZ2[2] = XYZ[2] + (XYZDot[2] * h / 2) + (k1[2] * h**2 / 8)
XYZDot2[2] = XYZDot[2] + (k1[2] * h / 2)
radius = np.sqrt((XYZ2[0]**2)+(XYZ2[1]**2)+(XYZ2[2]**2))
....
Существует больше кода, однако я хочу ограничить то, что я пока показываю, так как это промежуточные шаги, которые я больше всего заинтересован в решении. В основном, для тех, кто знаком с векторами состояний и использует RK4, вы можете видеть, что положение и скорость обновляются на промежуточном этапе, но не ускорение. Мой вопрос связан с расчетом, необходимым для того, чтобы обновить тоже ускорение. Это началось бы:
XYZDDot[0] = ...
XYZDDot[1] = ...
XYZDDot[2] = ...
... но что будет после, не очень понятно. Любые советы приветствуются.
Ниже приведен полный код:
for j in h_step_values:
h = j
if h > 0:
one_way_iteration_steps = one_way_iteration_steps -1
elif h < 0:
one_way_iteration_steps = one_way_iteration_steps +1
XYZ = initial_XYZ
#if total_step_number != 0:
for i in range(0, one_way_iteration_steps):
#Calculate k1
k1[0] = (-cs.GM_GLONASS * XYZ[0] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[0] * (1 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[0] + (cs.OMEGAE_DOT**2 * XYZ[0]) + (2 * cs.OMEGAE_DOT * XYZDot[1])
k1[1] = (-cs.GM_GLONASS * XYZ[1] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[1] * (1 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[1] + (cs.OMEGAE_DOT**2 * XYZ[1]) - (2 * cs.OMEGAE_DOT * XYZDot[0])
k1[2] = (-cs.GM_GLONASS * XYZ[2] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ[2] * (3 - (5*(XYZ[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[2]
#Intermediate step to bridge k1 to k2
XYZ2[0] = XYZ[0] + (XYZDot[0] * h / 2) + (k1[0] * h**2 / 8)
XYZDot2[0] = XYZDot[0] + (k1[0] * h / 2)
XYZDDot2[0] = XYZDDot[0] + (k1[0] * h / 2)
XYZ2[1] = XYZ[1] + (XYZDot[1] * h / 2) + (k1[1] * h**2 / 8)
XYZDot2[1] = XYZDot[1] + (k1[1] * h / 2)
XYZ2[2] = XYZ[2] + (XYZDot[2] * h / 2) + (k1[2] * h**2 / 8)
XYZDot2[2] = XYZDot[2] + (k1[2] * h / 2)
radius = np.sqrt((XYZ2[0]**2)+(XYZ2[1]**2)+(XYZ2[2]**2))
#Calculate k2
k2[0] = (-cs.GM_GLONASS * XYZ2[0] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[0] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[0] + (cs.OMEGAE_DOT**2 * XYZ2[0]) + (2 * cs.OMEGAE_DOT * XYZDot2[1])
k2[1] = (-cs.GM_GLONASS * XYZ2[1] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[1] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[1] + (cs.OMEGAE_DOT**2 * XYZ2[1]) - (2 * cs.OMEGAE_DOT * XYZDot2[0])
k2[2] = (-cs.GM_GLONASS * XYZ2[2] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[2] * (3 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[2]
#Intermediate step to bridge k2 to k3
XYZ2[0] = XYZ[0] + (XYZDot[0] * h / 2) + (k2[0] * h**2 / 8)
XYZDot2[0] = XYZDot[0] + (k2[0] * h / 2)
XYZ2[1] = XYZ[1] + (XYZDot[1] * h / 2) + (k2[1] * h**2 / 8)
XYZDot2[1] = XYZDot[1] + (k2[1] * h / 2)
XYZ2[2] = XYZ[2] + (XYZDot[2] * h / 2) + (k2[2] * h**2 / 8)
XYZDot2[2] = XYZDot[2] + (k2[2] * h / 2)
radius = np.sqrt((XYZ2[0]**2)+(XYZ2[1]**2)+(XYZ2[2]**2))
#Calculate k3
k3[0] = (-cs.GM_GLONASS * XYZ2[0] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[0] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[0] + (cs.OMEGAE_DOT**2 * XYZ2[0]) + (2 * cs.OMEGAE_DOT * XYZDot2[1])
k3[1] = (-cs.GM_GLONASS * XYZ2[1] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[1] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[1] + (cs.OMEGAE_DOT**2 * XYZ2[1]) - (2 * cs.OMEGAE_DOT * XYZDot2[0])
k3[2] = (-cs.GM_GLONASS * XYZ2[2] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[2] * (3 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[2]
#Intermediate step to bridge k3 to k4
XYZ2[0] = XYZ[0] + (XYZDot[0] * h) + (k3[0] * h**2 / 2)
XYZDot2[0] = XYZDot[0] + (k3[0] * h)
XYZ2[1] = XYZ[1] + (XYZDot[1] * h) + (k3[1] * h**2 / 2)
XYZDot2[1] = XYZDot[1] + (k3[1] * h)
XYZ2[2] = XYZ[2] + (XYZDot[2] * h) + (k3[2] * h**2 / 2)
XYZDot2[2] = XYZDot[2] + (k3[2] * h)
radius = np.sqrt((XYZ2[0]**2)+(XYZ2[1]**2)+(XYZ2[2]**2))
#Calculate k4
k4[0] = (-cs.GM_GLONASS * XYZ2[0] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[0] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[0] + (cs.OMEGAE_DOT**2 * XYZ2[0]) + (2 * cs.OMEGAE_DOT * XYZDot2[1])
k4[1] = (-cs.GM_GLONASS * XYZ2[1] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[1] * (1 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[1] + (cs.OMEGAE_DOT**2 * XYZ2[1]) - (2 * cs.OMEGAE_DOT * XYZDot2[0])
k4[2] = (-cs.GM_GLONASS * XYZ2[2] / radius**3) \
+ ((3/2) * cs.C_20 * cs.GM_GLONASS * cs.SEMI_MAJOR_AXIS_GLONASS**2 * XYZ2[2] * (3 - (5*(XYZ2[2]**2) / (radius**2))) / radius**5) \
+ XYZDDot[2]
for p in range(3):
XYZ[p] = XYZ[p] + XYZDot[p] * h + h**2 * ((k1[p] + 2*k2[p] + 2*k3[p] + k4[p]) / 12)
XYZDot[p] = XYZDot[p] + (h * (k1[p] + 2*k2[p] + 2*k3[p] + k4[p]) / 6)
radius = np.sqrt((XYZ[0])**2 + (XYZ[0])**2 + (XYZ[0])**2)
1 ответ
Уравнение, которое вы решаете, имеет вид
ddot x = a(x)
где a(x)
это ускорение, которое вычисляется в вашем k1
вычисление. Действительно, система первого порядка будет
dot v = a(x)
dot x = v
Таким образом, реализация RK4 начинается с
k1 = a(x)
l1 = v
k2 = a(x+l1*h/2) = a(x+v*h/2)
l2 = v+k1*h/2
и т. д. Использование l1,l2,...
кажется неявным в коде, вставляя эти линейные комбинации непосредственно там, где они встречаются.
Короче говоря, вы не пропустите ускорение вычислений, это основная часть фрагмента кода.
Обновление: (8/22) Чтобы приблизиться к цели промежуточных шагов моста, абстрактный код должен быть прочитан (с (* .. *)
обозначает комментарии или ненужные вычисления)
k1 = a(x) (* l1 = v *)
x2 = x + v*h/2 (* v2 = v + k1*h/2 *)
k2 = a(x2) (* l2 = v2 *)
x3 (* = x + l2*h/2 *)
= x + v*h/2 + k1*h^2/4 (* v3 = v + k2*h/2 *)
k3 = a(x3) (* l3 = v3 *)
x4 (* = x + l3*h *)
= x + v*h + k2*h^2/2 (* v4 = v + k3*h *)
k4 = a(x4) (* l4 = v4 *)
delta_v = ( k1+2*(k2+k3)+k4 ) * h/6
delta_x (* = ( l1+2*(l2+l3)+l4 ) * h/6 *)
= v*h + (k1+k2+k3) * h^2/6