Высокая потеря валидации (с набором данных поезда), в то время как потеря поезда низкая с использованием Tensorflow Object Detection API
При точной настройке модели Faster RCNN с помощью model_main.py
скрипт, я намеренно установил набор данных оценки таким же, как набор данных для обучения (TF_DATA
) и ожидайте такой же потери в оценке, как и при обучении. Однако потери оценки (после 4000 эпох):
Loss/BoxClassifierLoss/classification_loss = 20588.025
Loss/BoxClassifierLoss/localization_loss = 9474.761
Loss/RPNLoss/localization_loss = 0.10792526
Loss/RPNLoss/objectness_loss = 0.4256882
Loss/total_loss = 30063.021
loss = 30063.021
При этом общая потеря тренировки составляет:
I0804 14:01:57.539440 139956088792960 basic_session_run_hooks.py:260] loss = 0.27122372, step = 4200
Константы:
RESIZE_SHAPE = (300, 300)
EVALUATE_EVERY = 10000
EPOCHS = 100000
NMS_SCORE_THRESHOLD = 0.1
IOU_THRESHOLD = 0.7
IOU_THRESHOLD2 = 0.6
NMS_SCORE_THRESHOLD2 = 0.01
LR_INIT = 0.0001
BATCH_SIZE = 1
AUGMENTATIONS = ''''''
Мой файл конфигурации:
model {
faster_rcnn {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: '''+str(RESIZE_SHAPE[0])+'''
width: '''+str(RESIZE_SHAPE[1])+'''
}
}
feature_extractor {
type: 'faster_rcnn_resnet101'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: '''+str(NMS_SCORE_THRESHOLD)+'''
first_stage_nms_iou_threshold: '''+str(IOU_THRESHOLD)+'''
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: true
dropout_keep_probability: 0.5
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: '''+str(NMS_SCORE_THRESHOLD2)+'''
iou_threshold: '''+str(IOU_THRESHOLD2)+'''
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: '''+str(BATCH_SIZE)+'''
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: '''+str(LR_INIT)+'''
schedule {
step: 900000
learning_rate: '''+str(LR_INIT)+'''
}
schedule {
step: 1200000
learning_rate: '''+str(LR_INIT)+'''
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "'''+MODEL_TO_USE+'''/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: false
'''+AUGMENTATIONS+'''
}
train_input_reader: {
tf_record_input_reader {
input_path: "'''+TF_DATA+'''"
}
label_map_path: "'''+CLASS_LABELS+'''"
shuffle: true
}
eval_config: {
num_examples: '''+str(len(test_dataset))+'''
max_evals: '''+str(EPOCHS // EVALUATE_EVERY)+'''
min_score_threshold: '''+str(NMS_SCORE_THRESHOLD2)+'''
}
eval_input_reader: {
tf_record_input_reader {
input_path: "'''+TF_DATA+'''"
}
label_map_path: "'''+CLASS_LABELS+'''"
}
Почему общие потери различаются на этапах обучения и оценки с использованием одних и тех же данных?
Когда я использую только legacy/train.py
скрипт, я уже вижу разумные ограничивающие рамки через 1000 эпох
1 ответ
Ваш вопрос не воспроизводится, поэтому трудно найти основную причину ваших проблем.
Несмотря на это, вы должны знать о некоторых частях сети, которые ведут себя по-разному во время обучения и тестирования (проверки).
Первое - это отсев, который случается только во время тренировки; однако это не должно привести к худшим результатам.
Вторым и наиболее важным является пакетная нормализация, по крайней мере, в PyTorch, она использует текущую статистику пакета для вычисления и обновления текущих значений нормы пакета. Напротив, при тестировании он использует накопленную статистику во время обучения, поэтому во время обучения и тестирования он дает разные результаты, особенно если размер пакета очень мал.