Точность теста Caffe на этапе проверки постоянна при обучении сети

Я удивляюсь, почему моя точность теста продолжает получать постоянное значение 0,5. Я использую сеть CaffeNet только с изменением параметра полностью подключенного слоя, где я настроил num_output: 2.

Мой обучающий набор содержит 1000 положительных и 1000 отрицательных примеров, тогда как мой проверочный набор также содержит 1000 положительных и 1000 отрицательных примеров. Набор данных содержит изображения человека (все тело в цвете RGB). Я определил среднее значение файла и масштаба в слое данных. Моя сеть обучена изучать человека или нет (бинарный классификатор).

Фрагмент моей информации решателя выглядит следующим образом:

test_iter: 80
test_interval: 10
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 20
display: 10
max_iter: 80
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000

Результат обучения следующий:

I0228 11:49:27.411556  3422 solver.cpp:274] Learning Rate Policy: step
I0228 11:49:27.590368  3422 solver.cpp:331] Iteration 0, Testing net (#0)
I0228 11:53:29.203058  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 11:57:59.969632  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 11:58:26.602972  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 11:58:26.602999  3422 solver.cpp:398]     Test net output #1: loss = 0.726503 (* 1 = 0.726503 loss)
I0228 12:00:03.892771  3422 solver.cpp:219] Iteration 0 (-6.49109e-41 iter/s, 636.481s/10 iters), loss = 0.961699
I0228 12:00:03.892915  3422 solver.cpp:238]     Train net output #0: loss = 0.961699 (* 1 = 0.961699 loss)
I0228 12:00:03.892925  3422 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I0228 12:04:28.831887  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:13:36.909935  3422 solver.cpp:331] Iteration 10, Testing net (#0)
I0228 12:17:36.894516  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:22:00.724030  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:22:27.375306  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 12:22:27.375334  3422 solver.cpp:398]     Test net output #1: loss = 0.698973 (* 1 = 0.698973 loss)
I0228 12:23:56.072116  3422 solver.cpp:219] Iteration 10 (0.00698237 iter/s, 1432.18s/10 iters), loss = 0.696559
I0228 12:23:56.072247  3422 solver.cpp:238]     Train net output #0: loss = 0.696558 (* 1 = 0.696558 loss)
I0228 12:23:56.072252  3422 sgd_solver.cpp:105] Iteration 10, lr = 0.01
I0228 12:25:23.664594  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:37:08.202978  3422 solver.cpp:331] Iteration 20, Testing net (#0)
I0228 12:41:05.859966  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:45:28.599306  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:45:55.524168  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 12:45:55.524190  3422 solver.cpp:398]     Test net output #1: loss = 0.693187 (* 1 = 0.693187 loss)
I0228 12:45:55.553427  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 12:47:24.159780  3422 solver.cpp:219] Iteration 20 (0.00710183 iter/s, 1408.09s/10 iters), loss = 0.690313
I0228 12:47:24.159914  3422 solver.cpp:238]     Train net output #0: loss = 0.690313 (* 1 = 0.690313 loss)
I0228 12:47:24.159920  3422 sgd_solver.cpp:105] Iteration 20, lr = 0.001
I0228 12:57:31.167225  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:00:23.671567  3422 solver.cpp:331] Iteration 30, Testing net (#0)
I0228 13:04:14.114737  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:08:30.406244  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:08:56.273648  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 13:08:56.273674  3422 solver.cpp:398]     Test net output #1: loss = 0.696971 (* 1 = 0.696971 loss)
I0228 13:10:28.487870  3422 solver.cpp:219] Iteration 30 (0.00722373 iter/s, 1384.33s/10 iters), loss = 0.700565
I0228 13:10:28.488041  3422 solver.cpp:238]     Train net output #0: loss = 0.700565 (* 1 = 0.700565 loss)
I0228 13:10:28.488049  3422 sgd_solver.cpp:105] Iteration 30, lr = 0.001
I0228 13:17:38.463490  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:23:29.700287  3422 solver.cpp:331] Iteration 40, Testing net (#0)
I0228 13:27:27.217670  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:31:48.651156  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:32:15.021637  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 13:32:15.021661  3422 solver.cpp:398]     Test net output #1: loss = 0.694784 (* 1 = 0.694784 loss)
I0228 13:33:43.542735  3422 solver.cpp:219] Iteration 40 (0.00716818 iter/s, 1395.05s/10 iters), loss = 0.700307
I0228 13:33:43.542875  3422 solver.cpp:238]     Train net output #0: loss = 0.700307 (* 1 = 0.700307 loss)
I0228 13:33:43.542897  3422 sgd_solver.cpp:105] Iteration 40, lr = 0.0001
I0228 13:36:37.602869  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:46:57.980952  3422 solver.cpp:331] Iteration 50, Testing net (#0)
I0228 13:50:55.125911  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:55:22.078013  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 13:55:49.644492  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 13:55:49.644516  3422 solver.cpp:398]     Test net output #1: loss = 0.693804 (* 1 = 0.693804 loss)
I0228 13:57:19.439967  3422 solver.cpp:219] Iteration 50 (0.00706266 iter/s, 1415.9s/10 iters), loss = 0.685755
I0228 13:57:19.440101  3422 solver.cpp:238]     Train net output #0: loss = 0.685755 (* 1 = 0.685755 loss)
I0228 13:57:19.440107  3422 sgd_solver.cpp:105] Iteration 50, lr = 0.0001
I0228 13:57:19.843221  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 14:09:13.012436  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 14:10:40.182121  3422 solver.cpp:331] Iteration 60, Testing net (#0)
I0228 14:14:37.148968  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 14:18:57.929569  3429 data_layer.cpp:73] Restarting data prefetching from start.
I0228 14:19:24.183915  3422 solver.cpp:398]     Test net output #0: accuracy = 0.5
I0228 14:19:24.183939  3422 solver.cpp:398]     Test net output #1: loss = 0.693612 (* 1 = 0.693612 loss)
I0228 14:20:51.017705  3422 solver.cpp:219] Iteration 60 (0.00708428 iter/s, 1411.58s/10 iters), loss = 0.693453
I0228 14:20:51.017838  3422 solver.cpp:238]     Train net output #0: loss = 0.693453 (* 1 = 0.693453 loss)
I0228 14:20:51.017845  3422 sgd_solver.cpp:105] Iteration 60, lr = 1e-05
I0228 14:29:34.635071  3426 data_layer.cpp:73] Restarting data prefetching from start.
I0228 14:34:02.693697  3422 solver.cpp:331] Iteration 70, Testing net (#0)
I0228 14:37:59.742414  3429 data_layer.cpp:73] Restarting data prefetching from start.

Я также попытался изменить значение test_iter на 40 (вместо ранее установленного на 80) после перехода по этой ссылке и на эту, если параметр связан, но он все еще не разрешен. Кроме того, я попытался переставить данные путем регенерации набора данных с использованием модифицированного сценария create_imagenet.sh, но проблема все еще остается.

Каждый раз, когда я менял значение в решателе, я всегда менял и имя полностью связанного слоя. Это правильный путь?

Число эпох здесь составляет ~10. Возможен ли виновник? Подходит ли проблема такого рода к проблеме чрезмерного соответствия?

Любые намеки или предложения приветствуются.

Редакция:

Я включил отладочную информацию в решатель и обнаружил, что потеря бесконечно мала. Могу ли я сделать вывод, что он мало учится или вообще не учится тогда? Журнал с отладочной информацией приведен ниже:

I0228 19:58:37.235631  6771 net.cpp:593]     [Forward] Layer pool2, top blob pool2 data: 1.00214
I0228 19:58:37.810919  6771 net.cpp:593]     [Forward] Layer norm2, top blob norm2 data: 1.00212
I0228 19:58:42.022397  6771 net.cpp:593]     [Forward] Layer conv3, top blob conv3 data: 0.432846
I0228 19:58:42.022722  6771 net.cpp:605]     [Forward] Layer conv3, param blob 0 data: 0.00796926
I0228 19:58:42.022725  6771 net.cpp:605]     [Forward] Layer conv3, param blob 1 data: 0.000184241
I0228 19:58:42.041185  6771 net.cpp:593]     [Forward] Layer relu3, top blob conv3 data: 0.2017
I0228 19:58:45.277812  6771 net.cpp:593]     [Forward] Layer conv4, top blob conv4 data: 0.989365
I0228 19:58:45.278079  6771 net.cpp:605]     [Forward] Layer conv4, param blob 0 data: 0.00797053
I0228 19:58:45.278082  6771 net.cpp:605]     [Forward] Layer conv4, param blob 1 data: 0.99991
I0228 19:58:45.296561  6771 net.cpp:593]     [Forward] Layer relu4, top blob conv4 data: 0.989365
I0228 19:58:47.495208  6771 net.cpp:593]     [Forward] Layer conv5, top blob conv5 data: 1.52664
I0228 19:58:47.495394  6771 net.cpp:605]     [Forward] Layer conv5, param blob 0 data: 0.00804997
I0228 19:58:47.495399  6771 net.cpp:605]     [Forward] Layer conv5, param blob 1 data: 0.996736
I0228 19:58:47.507951  6771 net.cpp:593]     [Forward] Layer relu5, top blob conv5 data: 0.128866
I0228 19:58:47.562223  6771 net.cpp:593]     [Forward] Layer pool5, top blob pool5 data: 0.151769
I0228 19:58:48.269973  6771 net.cpp:593]     [Forward] Layer fc6, top blob fc6 data: 0.95253
I0228 19:58:48.280905  6771 net.cpp:605]     [Forward] Layer fc6, param blob 0 data: 0.00397552
I0228 19:58:48.280917  6771 net.cpp:605]     [Forward] Layer fc6, param blob 1 data: 0.999847
I0228 19:58:48.282137  6771 net.cpp:593]     [Forward] Layer relu6, top blob fc6 data: 0.935909
I0228 19:58:48.286769  6771 net.cpp:593]     [Forward] Layer drop6, top blob fc6 data: 0.938786
I0228 19:58:48.602710  6771 net.cpp:593]     [Forward] Layer fc7, top blob fc7 data: 3.76741
I0228 19:58:48.607655  6771 net.cpp:605]     [Forward] Layer fc7, param blob 0 data: 0.00411323
I0228 19:58:48.607664  6771 net.cpp:605]     [Forward] Layer fc7, param blob 1 data: 0.997461
I0228 19:58:48.608860  6771 net.cpp:593]     [Forward] Layer relu7, top blob fc7 data: 3.41694e-06
I0228 19:58:48.613621  6771 net.cpp:593]     [Forward] Layer drop7, top blob fc7 data: 3.15335e-06
I0228 19:58:48.615514  6771 net.cpp:593]     [Forward] Layer fc8_new15, top blob fc8_new15 data: 0.0446082
I0228 19:58:48.615520  6771 net.cpp:605]     [Forward] Layer fc8_new15, param blob 0 data: 0.0229027
I0228 19:58:48.615522  6771 net.cpp:605]     [Forward] Layer fc8_new15, param blob 1 data: 0.0444381
I0228 19:58:48.615579  6771 net.cpp:593]     [Forward] Layer loss, top blob loss data: 0.693174
I0228 19:58:48.615586  6771 net.cpp:621]     [Backward] Layer loss, bottom blob fc8_new15 diff: 0.00195124
I0228 19:58:48.617902  6771 net.cpp:621]     [Backward] Layer fc8_new15, bottom blob fc7 diff: 8.65365e-05
I0228 19:58:48.617914  6771 net.cpp:632]     [Backward] Layer fc8_new15, param blob 0 diff: 8.20022e-07
I0228 19:58:48.617916  6771 net.cpp:632]     [Backward] Layer fc8_new15, param blob 1 diff: 0.0105705
I0228 19:58:48.619067  6771 net.cpp:621]     [Backward] Layer drop7, bottom blob fc7 diff: 8.65526e-05
I0228 19:58:48.620265  6771 net.cpp:621]     [Backward] Layer relu7, bottom blob fc7 diff: 1.21017e-09
I0228 19:58:49.261282  6771 net.cpp:621]     [Backward] Layer fc7, bottom blob fc6 diff: 2.00745e-08
I0228 19:58:49.266103  6771 net.cpp:632]     [Backward] Layer fc7, param blob 0 diff: 1.43563e-07
I0228 19:58:49.266114  6771 net.cpp:632]     [Backward] Layer fc7, param blob 1 diff: 9.29627e-08
I0228 19:58:49.267330  6771 net.cpp:621]     [Backward] Layer drop6, bottom blob fc6 diff: 1.99176e-08
I0228 19:58:49.268508  6771 net.cpp:621]     [Backward] Layer relu6, bottom blob fc6 diff: 1.85305e-08
I0228 19:58:50.779518  6771 net.cpp:621]     [Backward] Layer fc6, bottom blob pool5 diff: 8.8138e-09
I0228 19:58:50.790220  6771 net.cpp:632]     [Backward] Layer fc6, param blob 0 diff: 3.01911e-07
I0228 19:58:50.790235  6771 net.cpp:632]     [Backward] Layer fc6, param blob 1 diff: 1.99256e-06
I0228 19:58:50.813318  6771 net.cpp:621]     [Backward] Layer pool5, bottom blob conv5 diff: 1.84585e-09
I0228 19:58:50.826406  6771 net.cpp:621]     [Backward] Layer relu5, bottom blob conv5 diff: 3.86034e-10
I0228 19:58:55.093768  6771 net.cpp:621]     [Backward] Layer conv5, bottom blob conv4 diff: 5.76684e-10
I0228 19:58:55.093967  6771 net.cpp:632]     [Backward] Layer conv5, param blob 0 diff: 1.47824e-06
I0228 19:58:55.093973  6771 net.cpp:632]     [Backward] Layer conv5, param blob 1 diff: 1.92951e-06
I0228 19:58:55.114212  6771 net.cpp:621]     [Backward] Layer relu4, bottom blob conv4 diff: 5.76684e-10
I0228 19:59:01.392058  6771 net.cpp:621]     [Backward] Layer conv4, bottom blob conv3 diff: 2.31243e-10
I0228 19:59:01.392359  6771 net.cpp:632]     [Backward] Layer conv4, param blob 0 diff: 1.76617e-07
I0228 19:59:01.392364  6771 net.cpp:632]     [Backward] Layer conv4, param blob 1 diff: 8.78101e-07
I0228 19:59:01.412240  6771 net.cpp:621]     [Backward] Layer relu3, bottom blob conv3 diff: 8.56331e-11
I0228 19:59:09.734658  6771 net.cpp:621]     [Backward] Layer conv3, bottom blob norm2 diff: 7.87699e-11
I0228 19:59:09.735258  6771 net.cpp:632]     [Backward] Layer conv3, param blob 0 diff: 1.33159e-07
I0228 19:59:09.735270  6771 net.cpp:632]     [Backward] Layer conv3, param blob 1 diff: 1.47704e-07
I0228 19:59:10.390552  6771 net.cpp:621]     [Backward] Layer norm2, bottom blob pool2 diff: 7.87615e-11
I0228 19:59:10.452433  6771 net.cpp:621]     [Backward] Layer pool2, bottom blob conv2 diff: 1.50474e-11
I0228 19:59:10.516407  6771 net.cpp:621]     [Backward] Layer relu2, bottom blob conv2 diff: 1.50474e-11
I0228 19:59:20.241587  6771 net.cpp:621]     [Backward] Layer conv2, bottom blob norm1 diff: 2.07819e-11
I0228 19:59:20.241801  6771 net.cpp:632]     [Backward] Layer conv2, param blob 0 diff: 3.61894e-09
I0228 19:59:20.241807  6771 net.cpp:632]     [Backward] Layer conv2, param blob 1 diff: 1.05108e-07
I0228 19:59:35.405725  6771 net.cpp:621]     [Backward] Layer norm1, bottom blob pool1 diff: 2.07819e-11
I0228 19:59:35.494249  6771 net.cpp:621]     [Backward] Layer pool1, bottom blob conv1 diff: 4.26e-12
I0228 19:59:35.585350  6771 net.cpp:621]     [Backward] Layer relu1, bottom blob conv1 diff: 3.25633e-12
I0228 19:59:38.335880  6771 net.cpp:632]     [Backward] Layer conv1, param blob 0 diff: 9.37551e-09
I0228 19:59:38.335896  6771 net.cpp:632]     [Backward] Layer conv1, param blob 1 diff: 5.86281e-08
E0228 19:59:38.411557  6771 net.cpp:721]     [Backward] All net params (data, diff): L1 norm = (246967, 14.733); L2 norm = (103.38, 0.0470958)
I0228 19:59:38.411592  6771 solver.cpp:219] Iteration 70 (0.00886075 iter/s, 1128.57s/10 iters), loss = 0.693174
I0228 19:59:38.411600  6771 solver.cpp:238]     Train net output #0: loss = 0.693174 (* 1 = 0.693174 loss)
I0228 19:59:38.411605  6771 sgd_solver.cpp:105] Iteration 70, lr = 1e-05
I0228 20:05:17.468423  6775 data_layer.cpp:73] Restarting data prefetching from start.

1 ответ

data_layer.cpp:73] Restarting data prefetching from start.

Вышеупомянутое сообщение появляется, когда файл.txt, заданный в качестве входных данных для слоя данных, достиг конца файла.

Это сообщение может появляться часто, когда:

  1. Вы передали неправильный файл.txt слою данных
  2. Формат файла.txt не соответствует ожиданиям Caffe
  3. В файле очень мало данных.
Другие вопросы по тегам