Как настроить многоагентный PPO rllib?

У меня очень простая многоагентная среда, настроенная для использования с ray.rllib, и я пытаюсь запустить простой базовый тест сценария обучения PPO и Random Policy следующим образом:

register_env("my_env", lambda _: MyEnv(num_agents=2))
mock = MyEnv()
obs_space = mock.observation_space
act_space = mock.action_space
tune.run( 
    "PPO",
    stop={"training_iteration": args.num_iters},
    config={
        "env": "my_env",
        "num_gpus":1,
        "multiagent": {
            "policies": {
                "ppo_policy": (None, obs_space, act_space, {}),
                "random": (RandomPolicy, obs_space, act_space, {}),
            },  
            "policy_mapping_fn": (
                lambda agent_id: {1:"appo_policy", 2:"random"}[agent_id]),
        },
    },
)

При тестировании я получаю следующее сообщение об ошибке:

Traceback (most recent call last):
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/tune/trial_runner.py", line 467, in _process_trial
    result = self.trial_executor.fetch_result(trial)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py", line 381, in fetch_result
    result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/worker.py", line 1513, in get
    raise value.as_instanceof_cause()
ray.exceptions.RayTaskError(ValueError): ray::PPO.__init__() (pid=18163, ip=192.168.1.25)
  File "python/ray/_raylet.pyx", line 414, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 449, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 450, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 452, in ray._raylet.execute_task
  File "python/ray/_raylet.pyx", line 407, in ray._raylet.execute_task.function_executor
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 90, in __init__
    Trainer.__init__(self, config, env, logger_creator)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 455, in __init__
    super().__init__(config, logger_creator)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/tune/trainable.py", line 174, in __init__
    self._setup(copy.deepcopy(self.config))
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 596, in _setup
    self._init(self.config, self.env_creator)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 129, in _init
    self.optimizer = make_policy_optimizer(self.workers, config)
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/agents/ppo/ppo.py", line 95, in choose_policy_optimizer
    shuffle_sequences=config["shuffle_sequences"])
  File "/home/me/anaconda3/envs/dorsa/lib/python3.7/site-packages/ray/rllib/optimizers/multi_gpu_optimizer.py", line 99, in __init__
    "Only TF graph policies are supported with multi-GPU. "
ValueError: Only TF graph policies are supported with multi-GPU. Try setting `simple_optimizer=True` instead.

Я пробовал установить simple_optimizer:True в конфиге, но это дало мне NotImplementedError в set_weights функция класса политики rllib...

Я отключил "PPO" в конфиге для "PG"и все прошло нормально, так что вряд ли это как-то связано с тем, как я определил свою среду. Есть какие нибудь идеи как это починить?

1 ответ

Взгляните на эту проблему. Вы должны определить:

def get_weights(self):
        return None
Другие вопросы по тегам