Когда я запускаю эту модель, это всегда говорит мне последовательность ошибок (0)<=8? что я могу сделать, если я хочу изменить 8 и что именно означает 8?

    def get_model(img_h,nclass=None):
        start_epoch = 0
        stop_epoch = 30
        img_w = 32

        # Input Parameters
        img_h = img_h
        words_per_epoch = 16000
        val_split = 0.2
        val_words = int(words_per_epoch * (val_split))

        # Network parameters
        conv_filters = 16
        kernel_size = (3, 3)
        pool_size = 2
        time_dense_size = 32
        rnn_size = 512
        minibatch_size = 32

        if K.image_data_format() == 'channels_first':
            input_shape = (1, img_w, img_h)
        else:
            input_shape = (img_w, None, 1)
        act = 'relu'
        input_data = Input(name='the_input', shape=input_shape, dtype='float32')
        inner = Conv2D(conv_filters, kernel_size, padding='same',
                       activation=act, kernel_initializer='he_normal',
                       name='conv1')(input_data)
        inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)
        inner = Conv2D(conv_filters, kernel_size, padding='same',
                       activation=act, kernel_initializer='he_normal',
                       name='conv2')(inner)
        inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner)

        conv_to_rnn_dims = (img_w // (pool_size ** 2), (img_h // (pool_size ** 2)) * conv_filters)
        inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner)

        # cuts down input size going into RNN:
        inner = Dense(time_dense_size, activation=act, name='dense1')(inner)

        # Two layers of bidirectional GRUs
        # GRU seems to work as well, if not better than LSTM:
        gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner)
        gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(inner)
        gru1_merged = add([gru_1, gru_1b])
        gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
        gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)

        # transforms RNN output to character activations:
        inner = Dense(12, kernel_initializer='he_normal',
                      name='dense2')(concatenate([gru_2, gru_2b]))
        y_pred = Activation('softmax', name='softmax')(inner)
        Model(inputs=input_data, outputs=y_pred).summary()

        labels = Input(name='the_labels', shape=[None],dtype='float32')
        input_length = Input(name='input_length', shape=[1], dtype='int64')
        label_length = Input(name='label_length', shape=[1], dtype='int64')
        # Keras doesn't currently support loss funcs with extra parameters
        # so CTC loss is implemented in a lambda layer
        loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
        # clipnorm seems to speeds up convergence
        sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
        model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
        # the loss calc occurs elsewhere, so use a dummy lambda func for the loss
        model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
        return model
sequence_length(0) <= 8
     [[{{node ctc_10/CTCLoss}} = CTCLoss[_class=["loc:@training_10/SGD/gradients/ctc_10/CTCLoss_grad/mul"], ctc_merge_repeated=true, ignore_longer_outputs_than_inputs=false, preprocess_collapse_repeated=false, _device="/job:localhost/replica:0/task:0/device:CPU:0"](ctc_10/Log/_755, ctc_10/ToInt64/_757, ctc_10/ToInt32_2/_759, ctc_10/ToInt32_1/_761)]]
     [[{{node ctc_10/CTCLoss/_763}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_3694_ctc_10/CTCLoss", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]

0 ответов

Другие вопросы по тегам