Как получить лучшую функцию или Gens от "random_search(n,dim)", используя код Python?
Я получил функцию или Gens от random_search(n,dim), но если я перезапущу программу, результат всегда будет меняться или отличаться от результата до. Я хочу, чтобы выбор функции (gens) имел тот же результат, хотя я хочу перезапустить программу / код.
Я не могу получить тот же результат, если я перезапущу код или программу
питон
Код BCS для выбора функции
def BCS(Eval_Func,m_i=200,n=24,minf=0,dim=None,prog=False,alpha=0.1,beta=1.5,param=0.25):
estimate=Eval_Func().evaluate
if dim==None:
dim=Eval_Func().check_dimentions(dim)
pa=param
#flag=dr
gens=random_search(n,dim)
fit=[float("-inf") if minf == 0 else float("inf") for _ in range(n)]
pos=[0 for _ in range(n)]
g_pos=[0]*dim
g_val=float("-inf") if minf == 0 else float("inf")
gens_dict={tuple([0]*dim):float("-inf") if minf == 0 else float("inf")}
if prog:
miter=tqdm(range(m_i))
else:
miter=range(m_i)
for it in miter:
for i,g in enumerate(gens):
if tuple(g) in gens_dict:
score=gens_dict[tuple(g)]
else:
score=estimate(g)
gens_dict[tuple(g)]=score
if score > fit[i] if minf==0 else score < fit[i]:
fit[i]=score
pos[i]=g
maxfit,maxind=max(fit),fit.index(max(fit))
minfit,minind=min(fit),fit.index(min(fit))
if minf==0:
if maxfit > g_val:
g_val=dc(maxfit)
g_pos=dc(gens[maxind])
else:
if minfit < g_val:
g_val=dc(minfit)
g_pos=dc(gens[minind])
if pa < random.uniform(0,1):
if minf==0:
gens[minind]=[0 if 0.5>random.uniform(0,1) else 1 for _ in range(dim)]#rand_gen()
fit[minind]=float("-inf") if minf == 0 else float("inf")
else:
gens[maxind]=[0 if 0.5>random.uniform(0,1) else 1 for _ in range(dim)]#rand_gen()
fit[maxind]=float("-inf") if minf == 0 else float("inf")
for g in gens:
for d in range(dim):
x=levy_flight(beta,g_pos[d],g[d],alpha)
if random.uniform(0,1) < sigmoid(x):
g[d]=1
else:
g[d]=0
return g_val,g_pos,g_pos.count(1)
Форма кода Класс Оценить
class Evaluate:
def __init__(self):
self.train_l = tr_y
self.train_d = tr_x
self.test_l = te_y
self.test_d=te_x
self.K = 2
def evaluate(self,gen):
mask=np.array(gen) > 0
al_data=np.array([al[mask] for al in self.train_d])
#al_test_data=np.array([al[mask] for al in self.test_d])
kf = ms.KFold(n_splits=self.K,random_state=42)
s = 0
for tr_ix,te_ix in kf.split(al_data):
s+= svm.SVR(kernel = 'rbf', gamma='scale', C=1.0, epsilon=0.2).fit(al_data[tr_ix],self.train_l[tr_ix]).score(al_data[te_ix],self.train_l[te_ix])#.predict(al_test_data)
s/=self.K
return s#np.count_nonzero(self.test_l==res)/len(self.test_l)
def check_dimentions(self,dim):
if dim==None:
return len(self.train_d[0])
else:
return dim
Код для Test_score
def test_score(gen,tr_x,tr_y,te_x,te_y):
mask=np.array(gen) == 1
al_data=np.array(tr_x[:,mask])
al_test_data=np.array(te_x[:,mask])
return np.mean(np.abs(([svm.SVR(kernel = 'rbf', gamma='scale', C=1.0, epsilon=0.2).fit(al_data,tr_y).score(al_test_data,te_y) for i in range(4)])))*100
Код для вызова Программы БКС и Класса Оценки
def fitureSelection(data):
result = []
for i in range(0,2):
X = data.loc[data['label']== i].iloc[:,0:93]
y = data.loc[data['label']== i].iloc[:,95]
tr_x, te_x, tr_y, te_y = train_test_split(X,y,test_size=0.2)
sc_X = StandardScaler()
tr_x = sc_X.fit_transform(tr_x)
te_x = sc_X.fit_transform(te_x)
s,g,l = BCS(Eval_Func=Evaluate,n=20,m_i=200)
result.append("".join(map(str,g)))
return result
Код для вызова def fitureSelection (data)
hasil = fitureSelection(Hasilcolend)
Результат
['000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000',
'000000000000100000010000000000000000000100000000000000001100000000000000000000000000000001010001000000000'] '