Использование той же модели TPU для обучения и вывода (прогнозирования) в Google Colab

У меня есть код примерно так:

def getModel():
    model = Sequential()
    model.Add(...)
    .....
    model = tf.contrib.tpu.keras_to_tpu_model(model,
            strategy=tf.contrib.tpu.TPUDistributionStrategy(
            tf.contrib.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
        ))
    model.compile(loss='mse',
                  optimizer=tf.train.AdamOptimizer(learning_rate=1e-3, ))
    return model

tpu_model = getModel()
## Main loop
    ....
    tpu_model.predict(states)
    tpu_model.fit(...)

Обратите внимание, что я использую то же самое tpu_model для пакетного прогнозирования и обучения.

tpu_model.predict() вроде нормально работает, но когда работает tpu_model.fit(...), он выдает следующую ошибку:

WARNING:tensorflow:tpu_model (from tensorflow.contrib.tpu.python.tpu.keras_support) is experimental and may change or be removed at any time, and without warning.
INFO:tensorflow:New input shapes; (re-)compiling: mode=infer (# of cores 8), [TensorSpec(shape=(4, 7), dtype=tf.float32, name='dense_6_input_10')]
INFO:tensorflow:Overriding default placeholder.
INFO:tensorflow:Remapping placeholder for dense_6_input
INFO:tensorflow:Started compiling
INFO:tensorflow:Finished compiling. Time elapsed: 1.464857578277588 secs
INFO:tensorflow:Setting weights on TPU model.
...
...
...
RuntimeError                              Traceback (most recent call last)
--> 101         history = tpu_model.fit(states, target_f, epochs=1, verbose=0)
    102         # Keeping track of loss
    103         loss = history.history['loss'][0]

/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
   1505                                   validation_split, validation_data, shuffle,
   1506                                   class_weight, sample_weight, initial_epoch,
-> 1507                                   steps_per_epoch, validation_steps, **kwargs)
   1508       finally:
   1509         self._numpy_to_infeed_manager_list = []

/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py in _pipeline_fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
   1578         steps_name='steps_per_epoch',
   1579         steps=steps_per_epoch,
-> 1580         validation_split=validation_split)
   1581 
   1582     # Prepare validation data

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split)
    990         x, y, sample_weight = next_element
    991     x, y, sample_weights = self._standardize_weights(x, y, sample_weight,
--> 992                                                      class_weight, batch_size)
    993     return x, y, sample_weights
    994 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _standardize_weights(self, x, y, sample_weight, class_weight, batch_size)
   1036     if y is not None:
   1037       if not self.optimizer:
-> 1038         raise RuntimeError('You must compile a model before '
   1039                            'training/testing. '
   1040                            'Use `model.compile(optimizer, loss)`.')

RuntimeError: You must compile a model before training/testing. Use `model.compile(optimizer, loss)`.

Как видно из журналов, на TPU, похоже, есть два режима:
1. mode=infer
2. mode=training

Кажется, что оба не могут быть сделаны одновременно. Есть ли способ обойти это?

Я не могу использовать Генератор, потому что я делаю Reinforcement Learning, где пакет основан на динамических выборках, динамически добавляемых в список, из которого производится выборка пакета, прогнозирование (и изменение определенных значений) и обучение.

1 ответ

Думаю, вы можете сделать это следующим образом:

  • Народный тензорный поток keras Adam и добавьте код в get_update ():
    if self.iterations = 0:
         lr = 0
    else:
         lr = self.lr
  • Используйте этого самодельного Адама, создайте небольшие данные поезда 'data_for_graph_build' с shape = (batchsize, ваша другая форма)
  • сделать tpu_model.fit(data_for_graph_build,epoch = 1,batch_size = batchsize)
  • наконец, сделайте свои tpu_model.predict(состояния) и tpu_model.fit(...)

Это кажется сложным. Надеюсь это работает. но может вызвать разницу, поскольку веса оптимизатора построены на data_for_graph_build

Как правило, вы хотели бы позвонить fit прежде чем позвонить predict так как fit тренирует модель и predict использует обученную модель, чтобы делать прогнозы. Ознакомьтесь с этими учебными пособиями по облачным TPU и ознакомьтесь с этим руководством, чтобы понять API Keras.

Другие вопросы по тегам