Корреляции Python Scipy Spearman
Я пытаюсь получить имена столбцов из фрейма данных (df) и связать их с результирующим массивом, созданным корреляционной функцией spearmanr. Мне нужно связать имена столбцов (aj) обратно со значением корреляции (spearman) и p-значениями (spearman_pvalue). Есть ли интуитивно понятный способ выполнить эту задачу?
from scipy.stats import pearsonr,spearmanr
import numpy as np
import pandas as pd
df=pd.DataFrame(np.random.randint(0,100,size= (100,10)),columns=list('abcdefghij'))
def binary(row):
if row>=50:
return 1
else:
return 0
df['target']=df.a.apply(binary)
spearman,spearman_pvalue=spearmanr(df.drop(['target'],axis=1),df.target)
print(spearman)
print(spearman_pvalue)
1 ответ
Решение
Кажется, вам нужно:
from scipy.stats import spearmanr
df=pd.DataFrame(np.random.randint(0,100,size= (100,10)),columns=list('abcdefghij'))
#print (df)
#faster for binary df
df['target'] = (df['a'] >= 50).astype(int)
#print (df)
spearman,spearman_pvalue=spearmanr(df.drop(['target'],axis=1),df.target)
df1 = pd.DataFrame(spearman.reshape(-1, 11), columns=df.columns)
#print (df1)
df2 = pd.DataFrame(spearman_pvalue.reshape(-1, 11), columns=df.columns)
#print (df2)
### Kyle, we can assign the index back to the column names for the total matrix:
df2=df2.set_index(df.columns)
df1=df1.set_index(df.columns)
Или же:
df1 = pd.DataFrame(spearman.reshape(-1, 11),
columns=df.columns,
index=df.columns)
df2 = pd.DataFrame(spearman_pvalue.reshape(-1, 11),
columns=df.columns,
index=df.columns)