Возможный баг с упаковщиком в мл
Упаковщик в пакеты, кажется, дает странные результаты. Если я применяю это к простой логистической регрессии, тогда логлосс увеличивается в 10 раз:
library(mlbench)
library(mlr)
data(PimaIndiansDiabetes)
trainTask1 <- makeClassifTask(data = PimaIndiansDiabetes,target = "diabetes",positive = "pos")
bagged.lrn = makeBaggingWrapper(makeLearner("classif.logreg"), bw.iters = 10, bw.replace = TRUE, bw.size = 0.8, bw.feats = 1)
bagged.lrn = setPredictType(bagged.lrn,"prob")
non.bagged.lrn = setPredictType(makeLearner("classif.logreg"),"prob")
rdesc = makeResampleDesc("CV", iters = 5L)
resample(learner = non.bagged.lrn, task = trainTask1, resampling = rdesc, show.info = FALSE,measures = logloss)
resample(learner = bagged.lrn, task = trainTask1, resampling = rdesc, show.info = FALSE,measures = logloss)
дает
Resample Result
Task: PimaIndiansDiabetes
Learner: classif.logreg
logloss.aggr: 0.49
logloss.mean: 0.49
logloss.sd: 0.02
Runtime: 0.0699999
для первого ученика и
Resample Result
Task: PimaIndiansDiabetes
Learner: classif.logreg.bagged
logloss.aggr: 5.41
logloss.mean: 5.41
logloss.sd: 0.80
Время выполнения: 0,645
для мешка. Таким образом, производительность в упаковке намного хуже. Есть ли ошибка или я сделал что-то не так?
Это мое sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mlr_2.9 stringi_1.1.1 ParamHelpers_1.8 ggplot2_2.1.0 BBmisc_1.10 mlbench_2.1-1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.6 magrittr_1.5 splines_3.3.1 munsell_0.4.3 lattice_0.20-33 xtable_1.8-2 colorspace_1.2-6
[8] R6_2.1.2 plyr_1.8.4 dplyr_0.5.0 tools_3.3.1 parallel_3.3.1 grid_3.3.1 checkmate_1.8.1
[15] data.table_1.9.6 gtable_0.2.0 DBI_0.4-1 htmltools_0.3.5 ggvis_0.4.3 survival_2.39-4 assertthat_0.1
[22] digest_0.6.9 tibble_1.1 Matrix_1.2-6 shiny_0.13.2 mime_0.5 parallelMap_1.3 scales_0.4.0
[29] backports_1.0.3 httpuv_1.3.3 chron_2.3-47
1 ответ
С этим результатом не обязательно что-то не так, хотя модель упаковки лучше указать.
Упаковка в мешки не всегда дает вам лучшую статистику производительности, скорее, она помогает вам избежать переоснащения и повышает точность.
Таким образом, причина того, что ваша модель без мешков имеет лучшую статистику производительности, может быть просто в том, что она переоснащается или иным образом дает более предвзятый результат с вводящей в заблуждение статистикой производительности.
Тем не менее, вот значительно улучшенная спецификация модели упаковки, которая снижает средний логлосс на 70%:
pacman::p_load(mlbench,mlr)
data(PimaIndiansDiabetes)
set.seed(1)
trainTask1 <- makeClassifTask(data = PimaIndiansDiabetes,target = "diabetes",positive = "pos")
bagged.lrn = makeBaggingWrapper(makeLearner("classif.logreg"),
bw.iters = 100,
bw.replace = TRUE,
bw.size = .6,
bw.feats = .5)
bagged.lrn = setPredictType(bagged.lrn,"prob")
non.bagged.lrn = setPredictType(makeLearner("classif.logreg"),"prob")
rdesc = makeResampleDesc("CV", iters = 10L)
resample(learner = non.bagged.lrn,
task = trainTask1,
resampling = rdesc,
show.info = T,
measures = logloss)
resample(learner = bagged.lrn,
task = trainTask1,
resampling = rdesc,
show.info = T,
measures = logloss)
где ключевой результат
Resample Result Task: PimaIndiansDiabetes Learner: classif.logreg.bagged logloss.aggr: 1.65 logloss.mean: 1.65 logloss.sd: 0.90 Runtime: 14.0544