Как использовать TetGen для этой простой трехмерной геометрии
Вот точки, определяющие мою простую трехмерную геометрию.
datN = {{{-0.47150460764747554`, 0.29559274991660417`,
0.010131794240974218`}, {-0.4762714873728534`,
0.2955927499166042`,
0.010567957416020535`}, {-0.4835042628911566`,
0.29559274991660417`,
0.01066658601048008`}, {-0.49133736140975415`,
0.29559274991660417`,
0.01010572204377315`}, {-0.4974365622729896`,
0.29559274991660417`,
0.009602808597554033`}, {-0.4999590574180981`,
0.2955927499166041`,
0.010150149141898643`}, {-0.497870343592127`,
0.2955927499166042`,
0.011728012221066566`}, {-0.491634397829927`,
0.2955927499166041`,
0.013089897457762985`}, {-0.4834169387190052`,
0.2955927499166042`,
0.013009607974106477`}, {-0.47609963350102275`,
0.2955927499166043`,
0.011622413291940486`}, {-0.471504606936728`,
0.2955927499166041`,
0.010131794240974216`}}, {{-0.5619323339485054`,
0.13709660728856332`,
0.010131794240974218`}, {-0.5878076066290028`,
0.13709660728856335`,
0.01249934738636439`}, {-0.6270680976744502`,
0.13709660728856332`,
0.0130347168361427`}, {-0.6695872237650179`,
0.13709660728856332`,
0.00999027080199048`}, {-0.7026945171227986`,
0.13709660728856332`,
0.007260388089336815`}, {-0.7163869644835803`,
0.13709660728856332`,
0.010231427144215837`}, {-0.705049141229765`,
0.13709660728856338`,
0.018796282936276536`}, {-0.6711995779276564`,
0.13709660728856332`,
0.02618878157043711`}, {-0.6265940901692914`,
0.13709660728856332`,
0.02575295931296998`}, {-0.5868747603960375`,
0.13709660728856335`,
0.018223077560156144`}, {-0.5619323300904714`,
0.1370966072885633`, 0.010131794240974216`}}};
Теперь мы готовим грани и вершины
pt = Flatten[{datN[[1]], datN[[2]]}, 1];
facets = Join[{{Flatten@Map[Position[pt, #] &, datN[[1]]]}},
Table[{Flatten@
Map[Position[pt, #] &, {datN[[1]][[i]], datN[[2]][[i]],
datN[[2]][[i + 1]], datN[[1]][[i + 1]]}]}, {i, 1,
10}], {{Flatten@Map[Position[pt, #] &, datN[[2]]]}}];
Затем мы используем TetGen в той же строке, как описано в документации для простейшего примера с блоком.
Needs["TetGenLink`"]
inInst = TetGenCreate[];
TetGenSetPoints[inInst, pt];
TetGenSetFacets[inInst, facets];
outInst = TetGenTetrahedralize[inInst, "pq1.414a0.01"];
coords = TetGenGetPoints[outInst];
surface = TetGenGetFaces[outInst];
Мы можем видеть, что сетка не генерируется, а также TetGenGetPoints
не удалось перенастроить вершины. Результат очень неутешительный.
GraphicsGrid@{{Graphics3D[GraphicsComplex[pt, Map[Polygon, facets]],
Boxed -> False],
Graphics3D[GraphicsComplex[coords, Polygon[surface]]]}}
Почему происходит эта странная вещь? Документация TetGen также не является удовлетворительной.
1 ответ
Пока в datN
Начальная и конечная точки двух подсписков фактически одинаковы, они считаются разными точками в отношении Mathematica. Это означает, что facets
на самом деле не представляет собой замкнутый многогранник (между краями есть небольшой промежуток {datN[[1,1]], datN[[2,1]]}
а также {datN[[1,-1]], datN[[2,-1]]}
).
Чтобы решить эту проблему, вы можете отбросить конечные точки из datN[[1]]
а также dat[[2]]
и заменить любое вхождение datN[[i]][[11]]
с datN[[i]][[1]]
в определении facets
например,
datN2 = Drop[#, -1]& /@ datN;
pt = Flatten[datN2, 1];
facets = Join[
{{Flatten@Map[Position[pt, #] &, datN2[[1]]]}},
Table[{Flatten@
Map[Position[pt, #] &, {datN2[[1]][[i]], datN2[[2]][[i]],
datN2[[2]][[Mod[i, 10] + 1]],
datN2[[1]][[Mod[i, 10] + 1]]}]}, {i, 1, 10}],
{{Flatten@Map[Position[pt, #] &, datN2[[2]]]}}];
Остальная часть кода остается прежней, т.е.
Needs["TetGenLink`"]
inInst = TetGenCreate[];
TetGenSetPoints[inInst, pt];
TetGenSetFacets[inInst, facets];
outInst = TetGenTetrahedralize[inInst, "pq1.414a0.01"];
coords = TetGenGetPoints[outInst];
surface = TetGenGetFaces[outInst];
Затем построение поверхности дает следующий результат:
GraphicsGrid@{{Graphics3D[GraphicsComplex[pt, Map[Polygon, facets]],
Boxed -> False],
Graphics3D[GraphicsComplex[coords, Polygon[surface]]]}}