Кривая Catmull-rom без острых выступов и самопересечений

У меня есть следующий код для расчета точек между четырьмя контрольными точками для создания кривой Catmull-rom:

CGPoint interpolatedPosition(CGPoint p0, CGPoint p1, CGPoint p2, CGPoint p3, float t)
{
    float t3 = t * t * t;
    float t2 = t * t;

    float f1 = -0.5 * t3 + t2 - 0.5 * t;
    float f2 = 1.5 * t3 - 2.5 * t2 + 1.0;
    float f3 = -1.5 * t3 + 2.0 * t2 + 0.5 * t;
    float f4 = 0.5 * t3 - 0.5 * t2;

    float x = p0.x * f1 + p1.x * f2 + p2.x * f3 + p3.x * f4;
    float y = p0.y * f1 + p1.y * f2 + p2.y * f3 + p3.y * f4;

    return CGPointMake(x, y);
}

Это прекрасно работает, но я хочу создать то, что, я думаю, называется центростремительной параметризацией. Это означает, что кривая не будет иметь выступов и самопересечений. Если я переместлю одну контрольную точку очень близко к другой, кривая должна стать "меньше". Я погуглил глаза, пытаясь найти способ сделать это. Кто-нибудь знает, как это сделать?

5 ответов

Решение

Мне нужно было реализовать это и для работы. Фундаментальная концепция, с которой нужно начать, заключается в том, что основное отличие между обычной реализацией Catmull-Rom и модифицированными версиями заключается в том, как они обрабатывают время.

Время Catmull-Rom

В непараметрической версии из вашей первоначальной реализации Catmull-Rom t начинается с 0 и заканчивается 1 и вычисляет кривую от P1 до P2. В параметризованной реализации времени t начинается с 0 в P0 и продолжает увеличиваться во всех четырех точках. Так что в едином случае это будет 1 в P1 и 2 в P2, и вы будете передавать значения в диапазоне от 1 до 2 для вашей интерполяции.

Аккордовый случай показывает |Pi+1 - P| как изменение времени Это просто означает, что вы можете использовать расстояние по прямой линии между точками каждого сегмента, чтобы вычислить фактическую длину для использования. В центростремительном случае просто используется немного другой метод для расчета оптимальной продолжительности времени для каждого сегмента.

Catmull-Rom Параметризация

Так что теперь нам просто нужно знать, как придумать уравнения, которые позволят нам включить наши новые значения времени. Типичное уравнение Кэтмалла-Рома содержит только одну t, время, для которого вы пытаетесь вычислить значение. Я нашел лучшую статью для описания того, как эти параметры рассчитываются здесь: http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf. Они были сосредоточены на математической оценке кривых, но в этом заключается ключевая формула Барри и Голдмана.(1)

Формула кривой Кубического Катмулла-Рома

На приведенной выше диаграмме стрелки означают "умноженное на" соотношение, указанное в стрелке.

Затем это дает нам то, что нам нужно для выполнения вычисления, чтобы получить желаемый результат. X и Y рассчитываются независимо, хотя я использовал коэффициент "Расстояние" для изменения времени на основе 2D-расстояния, а не 1D-расстояния.

Результаты теста:

Результаты теста Catmull-Rom

(1) Пи Джей Барри и Р. Н. Голдман. Алгоритм рекурсивной оценки для класса сплайнов Кэт-Малла. SIGGRAPH Computer Graphics, 22(4):199{204, 1988.

Исходный код для моей окончательной реализации на Java выглядит следующим образом:

/**
 * This method will calculate the Catmull-Rom interpolation curve, returning
 * it as a list of Coord coordinate objects.  This method in particular
 * adds the first and last control points which are not visible, but required
 * for calculating the spline.
 *
 * @param coordinates The list of original straight line points to calculate
 * an interpolation from.
 * @param pointsPerSegment The integer number of equally spaced points to
 * return along each curve.  The actual distance between each
 * point will depend on the spacing between the control points.
 * @return The list of interpolated coordinates.
 * @param curveType Chordal (stiff), Uniform(floppy), or Centripetal(medium)
 * @throws gov.ca.water.shapelite.analysis.CatmullRomException if
 * pointsPerSegment is less than 2.
 */
public static List<Coord> interpolate(List<Coord> coordinates, int pointsPerSegment, CatmullRomType curveType)
        throws CatmullRomException {
    List<Coord> vertices = new ArrayList<>();
    for (Coord c : coordinates) {
        vertices.add(c.copy());
    }
    if (pointsPerSegment < 2) {
        throw new CatmullRomException("The pointsPerSegment parameter must be greater than 2, since 2 points is just the linear segment.");
    }

    // Cannot interpolate curves given only two points.  Two points
    // is best represented as a simple line segment.
    if (vertices.size() < 3) {
        return vertices;
    }

    // Test whether the shape is open or closed by checking to see if
    // the first point intersects with the last point.  M and Z are ignored.
    boolean isClosed = vertices.get(0).intersects2D(vertices.get(vertices.size() - 1));
    if (isClosed) {
        // Use the second and second from last points as control points.
        // get the second point.
        Coord p2 = vertices.get(1).copy();
        // get the point before the last point
        Coord pn1 = vertices.get(vertices.size() - 2).copy();

        // insert the second from the last point as the first point in the list
        // because when the shape is closed it keeps wrapping around to
        // the second point.
        vertices.add(0, pn1);
        // add the second point to the end.
        vertices.add(p2);
    } else {
        // The shape is open, so use control points that simply extend
        // the first and last segments

        // Get the change in x and y between the first and second coordinates.
        double dx = vertices.get(1).X - vertices.get(0).X;
        double dy = vertices.get(1).Y - vertices.get(0).Y;

        // Then using the change, extrapolate backwards to find a control point.
        double x1 = vertices.get(0).X - dx;
        double y1 = vertices.get(0).Y - dy;

        // Actaully create the start point from the extrapolated values.
        Coord start = new Coord(x1, y1, vertices.get(0).Z);

        // Repeat for the end control point.
        int n = vertices.size() - 1;
        dx = vertices.get(n).X - vertices.get(n - 1).X;
        dy = vertices.get(n).Y - vertices.get(n - 1).Y;
        double xn = vertices.get(n).X + dx;
        double yn = vertices.get(n).Y + dy;
        Coord end = new Coord(xn, yn, vertices.get(n).Z);

        // insert the start control point at the start of the vertices list.
        vertices.add(0, start);

        // append the end control ponit to the end of the vertices list.
        vertices.add(end);
    }

    // Dimension a result list of coordinates. 
    List<Coord> result = new ArrayList<>();
    // When looping, remember that each cycle requires 4 points, starting
    // with i and ending with i+3.  So we don't loop through all the points.
    for (int i = 0; i < vertices.size() - 3; i++) {

        // Actually calculate the Catmull-Rom curve for one segment.
        List<Coord> points = interpolate(vertices, i, pointsPerSegment, curveType);
        // Since the middle points are added twice, once for each bordering
        // segment, we only add the 0 index result point for the first
        // segment.  Otherwise we will have duplicate points.
        if (result.size() > 0) {
            points.remove(0);
        }

        // Add the coordinates for the segment to the result list.
        result.addAll(points);
    }
    return result;

}

/**
 * Given a list of control points, this will create a list of pointsPerSegment
 * points spaced uniformly along the resulting Catmull-Rom curve.
 *
 * @param points The list of control points, leading and ending with a 
 * coordinate that is only used for controling the spline and is not visualized.
 * @param index The index of control point p0, where p0, p1, p2, and p3 are
 * used in order to create a curve between p1 and p2.
 * @param pointsPerSegment The total number of uniformly spaced interpolated
 * points to calculate for each segment. The larger this number, the
 * smoother the resulting curve.
 * @param curveType Clarifies whether the curve should use uniform, chordal
 * or centripetal curve types. Uniform can produce loops, chordal can
 * produce large distortions from the original lines, and centripetal is an
 * optimal balance without spaces.
 * @return the list of coordinates that define the CatmullRom curve
 * between the points defined by index+1 and index+2.
 */
public static List<Coord> interpolate(List<Coord> points, int index, int pointsPerSegment, CatmullRomType curveType) {
    List<Coord> result = new ArrayList<>();
    double[] x = new double[4];
    double[] y = new double[4];
    double[] time = new double[4];
    for (int i = 0; i < 4; i++) {
        x[i] = points.get(index + i).X;
        y[i] = points.get(index + i).Y;
        time[i] = i;
    }

    double tstart = 1;
    double tend = 2;
    if (!curveType.equals(CatmullRomType.Uniform)) {
        double total = 0;
        for (int i = 1; i < 4; i++) {
            double dx = x[i] - x[i - 1];
            double dy = y[i] - y[i - 1];
            if (curveType.equals(CatmullRomType.Centripetal)) {
                total += Math.pow(dx * dx + dy * dy, .25);
            } else {
                total += Math.pow(dx * dx + dy * dy, .5);
            }
            time[i] = total;
        }
        tstart = time[1];
        tend = time[2];
    }
    double z1 = 0.0;
    double z2 = 0.0;
    if (!Double.isNaN(points.get(index + 1).Z)) {
        z1 = points.get(index + 1).Z;
    }
    if (!Double.isNaN(points.get(index + 2).Z)) {
        z2 = points.get(index + 2).Z;
    }
    double dz = z2 - z1;
    int segments = pointsPerSegment - 1;
    result.add(points.get(index + 1));
    for (int i = 1; i < segments; i++) {
        double xi = interpolate(x, time, tstart + (i * (tend - tstart)) / segments);
        double yi = interpolate(y, time, tstart + (i * (tend - tstart)) / segments);
        double zi = z1 + (dz * i) / segments;
        result.add(new Coord(xi, yi, zi));
    }
    result.add(points.get(index + 2));
    return result;
}

/**
 * Unlike the other implementation here, which uses the default "uniform"
 * treatment of t, this computation is used to calculate the same values but
 * introduces the ability to "parameterize" the t values used in the
 * calculation. This is based on Figure 3 from
 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
 *
 * @param p An array of double values of length 4, where interpolation
 * occurs from p1 to p2.
 * @param time An array of time measures of length 4, corresponding to each
 * p value.
 * @param t the actual interpolation ratio from 0 to 1 representing the
 * position between p1 and p2 to interpolate the value.
 * @return
 */
public static double interpolate(double[] p, double[] time, double t) {
    double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
    double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
    double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
    double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
    double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
    double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
    return C12;
}   

Существует гораздо более простой и эффективный способ реализации этого, который требует лишь вычисления ваших касательных с использованием другой формулы без необходимости реализации алгоритма рекурсивной оценки Барри и Голдмана.

Если вы возьмете параметризацию Барри-Голдмана (на которую ссылается ответ Теда) C(t) для узлов (t0,t1,t2,t3) и контрольных точек (P0,P1,P2,P3), ее замкнутая форма будет довольно сложной, но в конце это все еще кубический многочлен от t, когда вы ограничиваете его интервалом (t1,t2). Таким образом, все, что нам нужно, чтобы полностью описать это, это значения и касательные в двух конечных точках t1 и t2. Если мы разработаем эти значения (я сделал это в Mathematica), мы найдем

C(t1)  = P1
C(t2)  = P2
C'(t1) = (P1 - P0) / (t1 - t0) - (P2 - P0) / (t2 - t0) + (P2 - P1) / (t2 - t1)
C'(t2) = (P2 - P1) / (t2 - t1) - (P3 - P1) / (t3 - t1) + (P3 - P2) / (t3 - t2)

Мы можем просто вставить это в стандартную формулу для вычисления кубического сплайна с заданными значениями и касательными в конечных точках, и у нас есть наш неоднородный сплайн Катмулла-Рома. Одно предостережение заключается в том, что вышеуказанные касательные вычисляются для интервала (t1,t2), поэтому, если вы хотите оценить кривую в стандартном интервале (0,1), просто измените масштаб касательных, умножив их на коэффициент (t2-t1).).

Я поставил рабочий пример C++ на Ideone: http://ideone.com/NoEbVM

Я также вставлю код ниже.

#include <iostream>
#include <cmath>

using namespace std;

struct CubicPoly
{
    float c0, c1, c2, c3;

    float eval(float t)
    {
        float t2 = t*t;
        float t3 = t2 * t;
        return c0 + c1*t + c2*t2 + c3*t3;
    }
};

/*
 * Compute coefficients for a cubic polynomial
 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
 * such that
 *   p(0) = x0, p(1) = x1
 *  and
 *   p'(0) = t0, p'(1) = t1.
 */
void InitCubicPoly(float x0, float x1, float t0, float t1, CubicPoly &p)
{
    p.c0 = x0;
    p.c1 = t0;
    p.c2 = -3*x0 + 3*x1 - 2*t0 - t1;
    p.c3 = 2*x0 - 2*x1 + t0 + t1;
}

// standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x0/x3
// (we don't need this here, but it's for illustration)
void InitCatmullRom(float x0, float x1, float x2, float x3, CubicPoly &p)
{
    // Catmull-Rom with tension 0.5
    InitCubicPoly(x1, x2, 0.5f*(x2-x0), 0.5f*(x3-x1), p);
}

// compute coefficients for a nonuniform Catmull-Rom spline
void InitNonuniformCatmullRom(float x0, float x1, float x2, float x3, float dt0, float dt1, float dt2, CubicPoly &p)
{
    // compute tangents when parameterized in [t1,t2]
    float t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
    float t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2;

    // rescale tangents for parametrization in [0,1]
    t1 *= dt1;
    t2 *= dt1;

    InitCubicPoly(x1, x2, t1, t2, p);
}

struct Vec2D
{
    Vec2D(float _x, float _y) : x(_x), y(_y) {}
    float x, y;
};

float VecDistSquared(const Vec2D& p, const Vec2D& q)
{
    float dx = q.x - p.x;
    float dy = q.y - p.y;
    return dx*dx + dy*dy;
}

void InitCentripetalCR(const Vec2D& p0, const Vec2D& p1, const Vec2D& p2, const Vec2D& p3,
    CubicPoly &px, CubicPoly &py)
{
    float dt0 = powf(VecDistSquared(p0, p1), 0.25f);
    float dt1 = powf(VecDistSquared(p1, p2), 0.25f);
    float dt2 = powf(VecDistSquared(p2, p3), 0.25f);

    // safety check for repeated points
    if (dt1 < 1e-4f)    dt1 = 1.0f;
    if (dt0 < 1e-4f)    dt0 = dt1;
    if (dt2 < 1e-4f)    dt2 = dt1;

    InitNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2, px);
    InitNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2, py);
}


int main()
{
    Vec2D p0(0,0), p1(1,1), p2(1.1,1), p3(2,0);
    CubicPoly px, py;
    InitCentripetalCR(p0, p1, p2, p3, px, py);
    for (int i = 0; i <= 10; ++i)
        cout << px.eval(0.1f*i) << " " << py.eval(0.1f*i) << endl;
}

Вот iOS-версия кода Теда. Я исключил части 'z'.

.час

typedef enum {
    CatmullRomTypeUniform,
    CatmullRomTypeChordal,
    CatmullRomTypeCentripetal
} CatmullRomType ;

.m

-(NSMutableArray *)interpolate:(NSArray *)coordinates withPointsPerSegment:(NSInteger)pointsPerSegment andType:(CatmullRomType)curveType {

    NSMutableArray *vertices = [[NSMutableArray alloc] initWithArray:coordinates copyItems:YES];

    if (pointsPerSegment < 3)
        return vertices;

    //start point
    CGPoint pt1 = [vertices[0] CGPointValue];
    CGPoint pt2 = [vertices[1] CGPointValue];

    double dx = pt2.x - pt1.x;
    double dy = pt2.y - pt1.y;

    double x1 = pt1.x - dx;
    double y1 = pt1.y - dy;

    CGPoint start = CGPointMake(x1*.5, y1);

    //end point
    pt2 = [vertices[vertices.count-1] CGPointValue];
    pt1 = [vertices[vertices.count-2] CGPointValue];

    dx = pt2.x - pt1.x;
    dy = pt2.y - pt1.y;

    x1 = pt2.x + dx;
    y1 = pt2.y + dy;

    CGPoint end = CGPointMake(x1, y1);

    [vertices insertObject:[NSValue valueWithCGPoint:start] atIndex:0];
    [vertices addObject:[NSValue valueWithCGPoint:end]];

    NSMutableArray *result = [[NSMutableArray alloc] init];

    for (int i = 0; i < vertices.count - 3; i++) {
        NSMutableArray *points = [self interpolate:vertices forIndex:i withPointsPerSegment:pointsPerSegment andType:curveType];

        if ([points count] > 0)
            [points removeObjectAtIndex:0];

        [result addObjectsFromArray:points];
    }

    return result;
}

-(double)interpolate:(double*)p  time:(double*)time t:(double) t {
    double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
    double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
    double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
    double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
    double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
    double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
    return C12;
    }

-(NSMutableArray*)interpolate:(NSArray *)points forIndex:(NSInteger)index withPointsPerSegment:(NSInteger)pointsPerSegment andType:(CatmullRomType)curveType {
    NSMutableArray *result = [[NSMutableArray alloc] init];

    double x[4];
    double y[4];
    double time[4];

    for (int i=0; i < 4; i++) {
        x[i] = [points[index+i] CGPointValue].x;
        y[i] = [points[index+i] CGPointValue].y;
        time[i] = i;
    }

    double tstart = 1;
    double tend = 2;

    if (curveType != CatmullRomTypeUniform) {
        double total = 0;

        for (int i=1; i < 4; i++) {
            double dx = x[i] - x[i-1];
            double dy = y[i] - y[i-1];

            if (curveType == CatmullRomTypeCentripetal) {
                total += pow(dx * dx + dy * dy, 0.25);
            }
            else {
                total += pow(dx * dx + dy * dy, 0.5); //sqrt
            }
            time[i] = total;
        }
        tstart = time[1];
        tend = time[2];
    }

    int segments = pointsPerSegment - 1;

    [result addObject:points[index+1]];

    for (int i =1; i < segments; i++) {
        double xi = [self interpolate:x time:time t:tstart + (i * (tend - tstart)) / segments];
        double yi = [self interpolate:y time:time t:tstart + (i * (tend - tstart)) / segments];
        NSLog(@"(%f,%f)",xi,yi);
        [result addObject:[NSValue valueWithCGPoint:CGPointMake(xi, yi)]];
    }
    [result addObject:points[index+2]];

    return result;
}

Кроме того, вот метод для превращения массива точек в путь Безье для рисования, используя выше

-(UIBezierPath*)bezierPathFromPoints:(NSArray *)points withGranulaity:(NSInteger)granularity
{
    UIBezierPath __block *path = [[UIBezierPath alloc] init];

    NSMutableArray *curve = [self interpolate:points withPointsPerSegment:granularity andType:CatmullRomTypeCentripetal];

    CGPoint __block p0 = [curve[0] CGPointValue];

    [path moveToPoint:p0];

    //use this loop to draw lines between all points
    for (int idx=1; idx < [curve count]; idx+=1) {
        CGPoint c1 = [curve[idx] CGPointValue];

        [path addLineToPoint:c1];
    };

    //or use this loop to use actual control points (less smooth but probably faster)
//    for (int idx=0; idx < [curve count]-3; idx+=3) {
//        CGPoint c1 = [curve[idx+1] CGPointValue];
//        CGPoint c2 = [curve[idx+2] CGPointValue];
//        CGPoint p1 = [curve[idx+3] CGPointValue];
//
//        [path addCurveToPoint:p1 controlPoint1:c1 controlPoint2:c2];
//    };

    return path;
}

Спасибо за ответ Теда и cfh.

Извините за мой плохой английский, и я не очень уверен, что я правильно понимаю.

Раньше меня смущало то, какова связь между и «Параметризацией кривых Катмулла-Рома» [Юксель и другие. 2009].

В конце концов кажется, что это имеет мало отношения к.

В ответе Теда мы можем обнаружить, что до тех пор, пока мы называем это «равномерной» кривой Катмулла-Рома. Итак, все кривые в являются «однородными» кривыми, в то время как параметризованный Catmull-Rom может дать только одну «однородную» кривая когда. просто влияет на то, насколько резко кривая изгибается в (интерполированных) контрольных точках, и может создавать серию «однородных» кривых.

Здесь, если мы примем во внимание уравнение из cfh, то есть:

      C(t1)  = P1
C(t2)  = P2
C'(t1) = (P1 - P0) / (t1 - t0) - (P2 - P0) / (t2 - t0) + (P2 - P1) / (t2 - t1)
C'(t2) = (P2 - P1) / (t2 - t1) - (P3 - P1) / (t3 - t1) + (P3 - P2) / (t3 - t2)

Когда α=0, мы знаем это . Подстановка t(i+1)-t(i)=1 к C'(t1) и C'(t2), мы можем получить:

      C'(t1)=1/2(P2-P0)
C'(t2)=1/2(P3-P1).

Другими словами, единственная «однородная» кривая, порожденная параметризованной кривой Катмулла-Рома, соответствует частному случаю τ=1/2 http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf . Более разные «однородные» кривые могут быть получены путем изменения τ, пока α уделяет больше внимания другому.

Я написал что-то на Python (адаптированная форма страницы Википедии Catmull-Rom), в котором сравниваются унифицированные, центростремительные и хордовые сплайны CR (хотя вы можете установить альфа на любое значение) с использованием случайных данных (вы можете использовать свои собственные данные и функции). работает нормально). Обратите внимание, что для конечных точек я просто застрял в быстром "хаке", который поддерживает наклон от первой и последней 2 точек, хотя расстояние между этой точкой и первой / потерянной известной точкой является произвольным (я установил его на 1% от домен... без всякой причины. Так что имейте это в виду, прежде чем обратиться к чему-то важному):

# coding: utf-8

# In[1]:

import numpy
import matplotlib.pyplot as plt
get_ipython().magic(u'pylab inline')


# In[2]:

def CatmullRomSpline(P0, P1, P2, P3, a, nPoints=100):
  """
  P0, P1, P2, and P3 should be (x,y) point pairs that define the Catmull-Rom spline.
  nPoints is the number of points to include in this curve segment.
  """
  # Convert the points to numpy so that we can do array multiplication
  P0, P1, P2, P3 = map(numpy.array, [P0, P1, P2, P3])

  # Calculate t0 to t4
  alpha = a
  def tj(ti, Pi, Pj):
    xi, yi = Pi
    xj, yj = Pj
    return ( ( (xj-xi)**2 + (yj-yi)**2 )**0.5 )**alpha + ti

  t0 = 0
  t1 = tj(t0, P0, P1)
  t2 = tj(t1, P1, P2)
  t3 = tj(t2, P2, P3)

  # Only calculate points between P1 and P2
  t = numpy.linspace(t1,t2,nPoints)

  # Reshape so that we can multiply by the points P0 to P3
  # and get a point for each value of t.
  t = t.reshape(len(t),1)

  A1 = (t1-t)/(t1-t0)*P0 + (t-t0)/(t1-t0)*P1
  A2 = (t2-t)/(t2-t1)*P1 + (t-t1)/(t2-t1)*P2
  A3 = (t3-t)/(t3-t2)*P2 + (t-t2)/(t3-t2)*P3

  B1 = (t2-t)/(t2-t0)*A1 + (t-t0)/(t2-t0)*A2
  B2 = (t3-t)/(t3-t1)*A2 + (t-t1)/(t3-t1)*A3

  C  = (t2-t)/(t2-t1)*B1 + (t-t1)/(t2-t1)*B2
  return C

def CatmullRomChain(P,alpha):
  """
  Calculate Catmull Rom for a chain of points and return the combined curve.
  """
  sz = len(P)

  # The curve C will contain an array of (x,y) points.
  C = []
  for i in range(sz-3):
    c = CatmullRomSpline(P[i], P[i+1], P[i+2], P[i+3],alpha)
    C.extend(c)

  return C


# In[8]:

# Define a set of points for curve to go through
Points = numpy.random.rand(12,2)
x1=Points[0][0]
x2=Points[1][0]
y1=Points[0][1]
y2=Points[1][1]
x3=Points[-2][0]
x4=Points[-1][0]
y3=Points[-2][1]
y4=Points[-1][1]
dom=max(Points[:,0])-min(Points[:,0])
rng=max(Points[:,1])-min(Points[:,1])
prex=x1+sign(x1-x2)*dom*0.01
prey=(y1-y2)/(x1-x2)*dom*0.01+y1
endx=x4+sign(x4-x3)*dom*0.01
endy=(y4-y3)/(x4-x3)*dom*0.01+y4
print len(Points)
Points=list(Points)
Points.insert(0,array([prex,prey]))
Points.append(array([endx,endy]))
print len(Points)


# In[9]:

#Define alpha
a=0.

# Calculate the Catmull-Rom splines through the points
c = CatmullRomChain(Points,a)

# Convert the Catmull-Rom curve points into x and y arrays and plot
x,y = zip(*c)
plt.plot(x,y,c='green',zorder=10)

# Plot the control points
px, py = zip(*Points)
plt.plot(px,py,'or')

a=0.5
c = CatmullRomChain(Points,a)
x,y = zip(*c)
plt.plot(x,y,c='blue')

a=1.
c = CatmullRomChain(Points,a)
x,y = zip(*c)
plt.plot(x,y,c='red')


plt.grid(b=True)
plt.show()


# In[10]:

Points


# In[ ]:

оригинальный код: https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline

Другие вопросы по тегам