Построение реализаций случайного процесса на одном графике
Я хочу построить несколько реализаций случайного процесса в Matlab. Для одной реализации у меня есть следующий код:
N = 80;
T = dt*N;
dWt = zeros(1,N);
S= repmat(S0,1,N);
S(1) = S0;
dWt = sqrt(dt) * randn;
for t=2:N
dWt(t) = sqrt(dt)*randn;
dSt = k*(mu-S(t-1))*dt + sigma*S(t-1)*dWt(t);
S(t) = S(t-1)+dSt;
end
plot(handles.pMeasure, [0:dt:T],[S0,S]);
Я хочу повторить этот цикл n раз и вывести результаты на одном графике.
1 ответ
Решение
Вы можете добавить дополнительный for
цикл, но было бы лучше векторизовать все и рассчитать все n
экземпляры сразу:
k = ...
mu = ...
sigma = ...
S0 = ... % Initial condition
dt = ... % Time step
n = ... % Number of instances
N = 80; % Number of time steps, not counting initial condition
T = dt*N; % Final time
rng(1); % Always seed random number generator
dWt = sigma*sqrt(dt)*randn(n,N); % Calculate Wiener increments
S = zeros(n,N+1); % Allocate
S(:,1) = S0; % Set initial conditions
for t = 2:N+1
S(:,t) = S(:,t-1) + k*(mu-S(:,t-1))*dt + S(:,t-1).*dWt(:,t-1);
end
plot(handles.pMeasure,0:dt:T,S)
Есть и другие способы оптимизировать это, если хотите, или вы также можете попробовать sde_euler
в моем наборе инструментов SDETools Matlab:
k = ...
mu = ...
sigma = ...
dt = ... % Time step
n = ... % Number of instances
N = 80; % Number of time steps, not counting initial condition
T = dt*N; % Final time
f = @(t,y)k*(mu-y); % Diffusion function
g = @(t,y)sigma*y; % Drift function
t = 0:dt:T; % Time vector
S0 = zeros(n,1); % Initial conditions
opts = sdeset('RandSeed',1,...
'SDEType','Ito'); % Set random seed, specify Ito SDE
S = sde_euler(f,g,t,S0,opts); % Simulate
plot(t,S)