Как я могу использовать алгоритм SOM для прогнозирования классификации
Я хотел бы видеть, может ли алгоритм SOM использоваться для прогнозирования классификации. Я использовал код ниже, но я вижу, что результаты классификации далеко не правы. Например, в наборе тестовых данных я получаю гораздо больше, чем просто 3 значения, которые у меня есть в целевой переменной обучения. Как я могу создать модель прогнозирования, которая будет согласована с целевой переменной обучения?
library(kohonen)
library(HDclassif)
data(wine)
set.seed(7)
training <- sample(nrow(wine), 120)
Xtraining <- scale(wine[training, ])
Xtest <- scale(wine[-training, ],
center = attr(Xtraining, "scaled:center"),
scale = attr(Xtraining, "scaled:scale"))
som.wine <- som(Xtraining, grid = somgrid(5, 5, "hexagonal"))
som.prediction$pred <- predict(som.wine, newdata = Xtest,
trainX = Xtraining,
trainY = factor(Xtraining$class))
И результат:
$unit.classif
[1] 7 7 1 7 1 11 6 2 2 7 7 12 11 11 12 2 7 7 7 1 2 7 2 16 20 24 25 16 13 17 23 22
[33] 24 18 8 22 17 16 22 18 22 22 18 23 22 18 18 13 10 14 15 4 4 14 14 15 15 4
1 ответ
Это может помочь:
- SOM - это неконтролируемый алгоритм классификации, поэтому вы не должны ожидать, что он будет обучен на наборе данных, который содержит метку классификатора (если вы сделаете это, ему понадобится эта информация для работы, и он будет бесполезен с наборами данных без меток)
- Идея состоит в том, что он будет своего рода "преобразовывать" входной числовой вектор в номер сетевого блока (попробуйте снова запустить свой код с сеткой 1 на 3, и вы получите ожидаемый результат)
- Затем вам нужно будет преобразовать эти номера сетевых блоков обратно в категории, которые вы ищете (это ключевая часть, отсутствующая в вашем коде)
Воспроизводимый пример ниже выведет классическую ошибку классификации. Он включает в себя один вариант реализации для части "конвертировать обратно", отсутствующей в вашем исходном сообщении.
Тем не менее, для этого конкретного набора данных модель переоснащается довольно быстро: 3 единицы дают наилучшие результаты.
#Set and scale a training set (-1 to drop the classes)
data(wine)
set.seed(7)
training <- sample(nrow(wine), 120)
Xtraining <- scale(wine[training, -1])
#Scale a test set (-1 to drop the classes)
Xtest <- scale(wine[-training, -1],
center = attr(Xtraining, "scaled:center"),
scale = attr(Xtraining, "scaled:scale"))
#Set 2D grid resolution
#WARNING: it overfits pretty quickly
#Errors are 36% for 1 unit, 63% for 2, 93% for 3, 89% for 4
som_grid <- somgrid(xdim = 1, ydim=3, topo="hexagonal")
#Create a trained model
som_model <- som(Xtraining, som_grid)
#Make a prediction on test data
som.prediction <- predict(som_model, newdata = Xtest)
#Put together original classes and SOM classifications
error.df <- data.frame(real = wine[-training, 1],
predicted = som.prediction$unit.classif)
#Return the category number that has the strongest association with the unit
#number (0 stands for ambiguous)
switch <- sapply(unique(som_model$unit.classif), function(x, df){
cat <- as.numeric(names(which.max(table(
error.df[error.df$predicted==x,1]))))
if(length(cat)<1){
cat <- 0
}
return(c(x, cat))
}, df = data.frame(real = wine[training, 1], predicted = som_model$unit.classif))
#Translate units numbers into classes
error.df$corrected <- apply(error.df, MARGIN = 1, function(x, switch){
cat <- switch[2, which(switch[1,] == x["predicted"])]
if(length(cat)<1){
cat <- 0
}
return(cat)
}, switch = switch)
#Compute a classification error
sum(error.df$corrected == error.df$real)/length(error.df$real)