R: Пропорциональное предположение об опасности в коксме ()

Я использую модель смешанных эффектов с использованием функции coxme() в R. Эта модель анализирует событие успеха продукции компаний в разных странах. Фиксированными эффектами являются, например, ВВП, население, технология и культурные переменные. Случайные эффекты - это разные страны.

Я знаю, что с coxph() можно проверить на пропорциональную опасность с помощью команды cox.zph().

Мой вопрос: Как я могу проверить пропорциональную опасность с помощью coxme()?

1 ответ

Фиксированные эффекты в модели случайных эффектов можно проверить на пропорциональные опасности (PH) с помощью той же функции, что и для стандартных coxph()модели. Согласно инструкции, fit аргумент в пользу cox.zph() является "результатом подбора регрессионной модели Кокса с использованием coxph или же coxme функции ".

Случайные эффекты «не проверяются на пропорциональные опасности, а рассматриваются как фиксированное смещение в модели».

Пример, заимствованный из с этого вопросаперекрестной проверкой :

      > library(survival)    
> library(coxme)    
> df <- stanford2
> df$cid <- round(df$id / 10) + 1 ## generates some clusters
> fit <- coxme(Surv(time, status) ~ age + t5 + (1 | cid),data=df)
> fit
Cox mixed-effects model fit by maximum likelihood
  Data: df
  events, n = 102, 157 (27 observations deleted due to missingness)
  Iterations= 2 12 
                    NULL Integrated    Fitted
Log-likelihood -451.0944  -446.8618 -446.8261

                  Chisq   df        p  AIC   BIC
Integrated loglik  8.47 3.00 0.037317 2.47 -5.41
 Penalized loglik  8.54 2.04 0.014582 4.46 -0.88

Model:  Surv(time, status) ~ age + t5 + (1 | cid) 
Fixed coefficients
          coef exp(coef)   se(coef)    z      p
age 0.02960206  1.030045 0.01135724 2.61 0.0091
t5  0.17056610  1.185976 0.18330590 0.93 0.3500

Random effects
 Group Variable  Std Dev      Variance    
 cid   Intercept 0.0199835996 0.0003993443
> cox.zph(fit)
       chisq   df    p
age    0.831 3.00 0.84
t5     2.062 2.04 0.36
GLOBAL 2.767 5.04 0.74

Это было сделано с survival_3.1-11 а также coxme_2.2-16.

Другие вопросы по тегам