Генерация синуса с использованием кордного алгоритма
Я хочу извиниться за этот + - популярный вопрос, но нигде не нашел конкретной реализации на VHDL. Я пишу алгоритм с нуля, и у меня есть проблемы с математической реализацией. Вывод недействителен. ничего не считается, а просто показывает 1 значение. Если кто-то знает, что мне нужно сделать, как это исправить, буду очень признателен за любую помощь.
Математическая часть
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity massive is
port (
clk : in std_logic;
reset : in std_logic;
sinus : out std_logic_vector (15 downto 0));
end massive;
architecture Behavioral of massive is
type my_type is array (0 to 16) of signed (15 downto 0);
signal x : my_type;
signal y : my_type;
signal z : my_type;
signal j : my_type := ("1010111111001000", "0110011111000101", "0011011011010100", "0001101111010101", "0000110111111000",
"0000011011111110", "0000001101111111", "0000000111000000", "0000000011100000", "0000000001110000",
"0000000000111000", "0000000000011100", "0000000000001110", "0000000000000111", "0000000000000100",
"0000000000000010", "0000000000000001");
begin
process(clk)
begin
x(0) <= "0000010100000110";
y(0) <= "0000000000000000";
z(0) <= "0000000000000000";
if rising_edge(clk) then
if reset <= '1' then
For n in 0 to 15 loop
if (z(n) >= 0) then
x(n+1) <= x(n) - (y(n)/2**n);
y(n+1) <= y(n) + (x(n)/2**n);
z(n+1) <= z(n) + j(n);
else
x(n+1) <= x(n) +(y(n)/2**n);
y(n+1) <= y(n) -(x(n)/2**n);
z(n+1) <= z(n) - j(n);
end if;
end loop;
sinus <= std_logic_vector(y(16));
end if;
end if;
end process;
end Behavioral;
Часть вращения
entity step_control is
generic (
first : integer := 0;
second : integer := 1;
third : integer := 2;
fourth : integer := 3;
);
Port ( clk : in STD_LOGIC;
Angle : out STD_LOGIC_VECTOR (12 downto 0);
quarter_in : out STD_LOGIC_VECTOR (1 downto 0));
end step_control;
architecture Behavioral of step_control is
signal Ang : std_logic_vector (12 downto 0) := (others => '0');
signal state : unsigned (1 downto 0) := to_unsigned(first,2);
signal count_ang : std_logic_vector (11 downto 0) := (others => '0');
begin
process (clk)
begin
if (rising_edge(clk)) then
case(state) is
when to_unsigned(first,2) => if (count_ang >= 3999) then --00
state <= to_unsigned(second,2);
count_ang <= "000000010000";
quarter_in <= "01";
Ang <= Ang - 16;
else
state <= to_unsigned(first,2);
quarter_in <= "00";
Ang <= Ang + 16;
count_ang <= count_ang + 16;
end if;
when to_unsigned(second,2) => if (count_ang >= 3999) then --01
state <= to_unsigned(third,2);
count_ang <= "000000010000";
quarter_in <= "10";
Ang <= Ang + 16;
else
state <= to_unsigned(second,2);
quarter_in <= "01";
Ang <= Ang - 16;
count_ang <= count_ang + 16;
end if;
when to_unsigned(third,2) => if (count_ang >= 3999) then
state <= to_unsigned(fourth,2);
count_ang <= "000000010000";
quarter_in <= "11";
Ang <= Ang - 16;
else
state <= to_unsigned(third,2);
quarter_in <= "10";
Ang <= Ang + 16;
count_ang <= count_ang + 16;
end if;
when to_unsigned(fourth,2) => if (count_ang >= 3999) then
state <= to_unsigned(first,2);
count_ang <= "000000010000";
quarter_in <= "00";
Ang <= Ang + 16;
else
state <= to_unsigned(fourth,2);
quarter_in <= "11";
Ang <= Ang - 16;
count_ang <= count_ang + 16;
end if;
when others => count_ang <= (others => '0');
end case;
end if;
end process;
Angle <= Ang;
end Behavioral;
И тестовый стенд (но я не знаю, я вроде все спрашиваю в модуле. И мой "пустой" тестовый стенд получается)
ENTITY testmass IS
END testmass;
ARCHITECTURE behavior OF testmass IS
-- Component Declaration for the Unit Under Test (UUT)
COMPONENT massive
PORT(
clk : IN std_logic;
reset : IN std_logic;
sinus : OUT std_logic_vector(15 downto 0)
);
END COMPONENT;
--Inputs
signal clk : std_logic := '0';
signal reset : std_logic := '0';
--Outputs
signal sinus : std_logic_vector(15 downto 0);
-- Clock period definitions
constant clk_period : time := 10 ns;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: massive PORT MAP (
clk => clk,
reset => reset,
sinus => sinus
);
-- Clock process definitions
clk_process :process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;
wait for clk_period*10;
-- insert stimulus here
wait;
end process;
END;
1 ответ
Ваш вопрос не является минимальным, полным и проверяемым примером, он не поддается проверке:
Опишите проблему. "Это не работает" - это не проблема. Скажите нам, каким должно быть ожидаемое поведение. Скажите нам, какова точная формулировка сообщения об ошибке и какая строка кода его производит. Кратко изложите проблему в заголовке вашего вопроса.
Вывод недействителен. ничего не считается, а просто показывает 1 значение.
Какая единственная ценность? Когда кто-то пытается дублировать вашу проблему, мы видим предупреждение об утверждениях для каждой оценки z(n) в процессе в массиве сущностей:
if (z(n) >= 0) then
Проблема тонкая как основная для сигналов VHDL.
Вы присваиваете значения сигналам в процессе и ожидаете, что они будут немедленно доступны. Этого не происходит. Сигнал не обновляется, пока какой-либо процесс еще не был возобновлен и впоследствии приостановлен в текущем цикле моделирования.
Для каждого времени моделирования в проецируемом выходном сигнале (очереди) имеется только одна запись. Последующие присваивания (которых здесь нет) приведут к тому, что в очередь будет помещено только последнее значение.
Более важно то, что будущее значение не доступно в текущем цикле моделирования.
Вместо этого x, y и z могут быть переменными, объявленными в процессе:
architecture foo of massive is
-- not predefined before -2008:
function to_string (inp: signed) return string is
variable image_str: string (1 to inp'length);
alias input_str: signed (1 to inp'length) is inp;
begin
for i in input_str'range loop
image_str(i) := character'VALUE(std_ulogic'IMAGE(input_str(i)));
end loop;
return image_str;
end function;
begin
process (clk)
type my_type is array (0 to 16) of signed (15 downto 0);
variable x: my_type;
variable y: my_type;
variable z: my_type;
constant j: my_type := ("1010111111001000", "0110011111000101",
"0011011011010100", "0001101111010101",
"0000110111111000", "0000011011111110",
"0000001101111111", "0000000111000000",
"0000000011100000", "0000000001110000",
"0000000000111000", "0000000000011100",
"0000000000001110", "0000000000000111",
"0000000000000100", "0000000000000010",
"0000000000000001");
begin
x(0) := "0000010100000110";
y(0) := "0000000000000000";
z(0) := "0000000000000000";
if rising_edge(clk) then
if reset = '0' then -- reset not driven condition was <=
report "init values:" & LF & HT &
"x(0) = " & to_string(x(0)) & LF & HT &
"y(0) = " & to_string(y(0)) & LF & HT &
"z(0) = " & to_string(z(0));
for n in 0 to 15 loop
if z(n) >= 0 then
x(n + 1) := x(n) - y(n) / 2 ** n;
y(n + 1) := y(n) + x(n) / 2 ** n;
z(n + 1) := z(n) + j(n);
else
x(n + 1) := x(n) + y(n) / 2 ** n;
y(n + 1) := y(n) - x(n) / 2 ** n;
z(n + 1) := z(n) - j(n);
end if;
report "n = " & integer'image(n) & LF & HT &
"x(" & integer'image(n + 1) & ") = " &
to_string(x(n + 1)) & LF & HT &
"y(" & integer'image(n + 1) & ") = " &
to_string(y(n + 1)) & LF & HT &
"z(" & integer'image(n + 1) & ") = " &
to_string(z(n + 1));
end loop;
sinus <= std_logic_vector(y(16));
report "sinus = " & to_string(y(16));
end if;
end if;
end process;
end architecture foo;
Операторы отчета добавляются, чтобы позволить выводить значения на консоль моделирования. Без прохождения времени между последовательными присваиваниями переменным значения переменных в форме волны не имеют никакого полезного значения. Есть симуляторы, которые не будут сообщать о переменных в дампах сигналов.
И вышеупомянутая архитектура производит:
ghdl -a testmass.vhdl ghdl -e testmass ghdl -r testmass testmass.vhdl:86:17:@5ns:(report note): init values: x(0) = 0000010100000110 y(0) = 0000000000000000 z(0) = 0000000000000000 testmass.vhdl:100:21:@5ns:(report note): n = 0 x(1) = 0000010100000110 y(1) = 0000010100000110 z(1) = 1010111111001000 testmass.vhdl:100:21:@5ns:(report note): n = 1 x(2) = 0000011110001001 y(2) = 0000001010000011 z(2) = 0100100000000011 testmass.vhdl:100:21:@5ns:(report note): n = 2 x(3) = 0000011011101001 y(3) = 0000010001100101 z(3) = 0111111011010111 testmass.vhdl:100:21:@5ns:(report note): n = 3 x(4) = 0000011001011101 y(4) = 0000010101000010 z(4) = 1001101010101100 testmass.vhdl:100:21:@5ns:(report note): n = 4 x(5) = 0000011010110001 y(5) = 0000010011011101 z(5) = 1000110010110100 testmass.vhdl:100:21:@5ns:(report note): n = 5 x(6) = 0000011011010111 y(6) = 0000010010101000 z(6) = 1000010110110110 testmass.vhdl:100:21:@5ns:(report note): n = 6 x(7) = 0000011011101001 y(7) = 0000010010001101 z(7) = 1000001000110111 testmass.vhdl:100:21:@5ns:(report note): n = 7 x(8) = 0000011011110010 y(8) = 0000010010000000 z(8) = 1000000001110111 testmass.vhdl:100:21:@5ns:(report note): n = 8 x(9) = 0000011011110110 y(9) = 0000010001111010 z(9) = 0111111110010111 testmass.vhdl:100:21:@5ns:(report note): n = 9 x(10) = 0000011011110100 y(10) = 0000010001111101 z(10) = 1000000000000111 testmass.vhdl:100:21:@5ns:(report note): n = 10 x(11) = 0000011011110101 y(11) = 0000010001111100 z(11) = 0111111111001111 testmass.vhdl:100:21:@5ns:(report note): n = 11 x(12) = 0000011011110101 y(12) = 0000010001111100 z(12) = 0111111111101011 testmass.vhdl:100:21:@5ns:(report note): n = 12 x(13) = 0000011011110101 y(13) = 0000010001111100 z(13) = 0111111111111001 testmass.vhdl:100:21:@5ns:(report note): n = 13 x(14) = 0000011011110101 y(14) = 0000010001111100 z(14) = 1000000000000000 testmass.vhdl:100:21:@5ns:(report note): n = 14 x(15) = 0000011011110101 y(15) = 0000010001111100 z(15) = 0111111111111100 testmass.vhdl:100:21:@5ns:(report note): n = 15 x(16) = 0000011011110101 y(16) = 0000010001111100 z(16) = 0111111111111110 testmass.vhdl:109:17:@5ns:(report note): sinus = 0000010001111100
Там, где мы видим, значения элементов вашего массива меняются вместо того, чтобы распространять X через сложение (или вычитание, когда z(n) < 0), назначенное в предыдущей итерации цикла.
Также обратите внимание, что сброс не изменяет значение в тестовом стенде, и существует ошибочная оценка его значения с использованием реляционного оператора "<=" в исходном массовом процессе.
j
не присваивается кроме начального значения и отображается как константа в приведенной выше архитектуре.
Лично я несколько скептически отношусь к тому, что вы можете выполнять эти 16 цепочек сложений или вычитаний, а также выбирать, какую операцию выполнять за 10 нс.