Z3 не может доказать эквивалентность между двумя простыми программами, использующими алгебры Клини с тестом, но Mathematica и Reduce способны
Наша проблема заключается в том, чтобы показать, что
используя алгебры Клини с тестом.
В случае, когда значение b сохраняется p, мы имеем условие коммутативности bp = pb; и эквивалентность между двумя программами сводится к уравнению
В случае, когда значение b не сохраняется p, мы имеем условие коммутативности pc = cp; и эквивалентность между двумя программами сводится к уравнению
Я пытаюсь доказать первое уравнение, используя следующий код SMT-LIB
(declare-sort S)
(declare-fun sum (S S) S)
(declare-fun mult (S S) S)
(declare-fun neg (S) S)
(assert (forall ((x S) (y S) (z S)) (= (mult x (sum y z)) (sum (mult x y) (mult y z))) ) )
(assert (forall ((x S) (y S) (z S)) (= (mult (sum y z) x) (sum (mult y x) (mult z x))) ) )
(assert (forall ((x S) (y S) (z S)) (= (mult x (mult y z)) (mult (mult x y) z)) ))
(check-sat)
(push)
(declare-fun b () S)
(declare-fun p () S)
(declare-fun q () S)
(declare-fun r () S)
(assert (= (mult b p) (mult p b)) )
(check-sat)
(pop)
но я получаю timeout
; то есть Z3 не может передать условие коммутативности bp = pb. Пожалуйста, запустите этот пример онлайн здесь.
Z3 не может доказать эти уравнения, но Mathematica и Reduce способны. Z3 не так мощен, как доказатель теорем. Ты согласен?
2 ответа
Первое уравнение доказано с использованием Z3 со следующим кодом SMT-LIB
(declare-sort S)
(declare-fun e () S)
(declare-fun O () S)
(declare-fun mult (S S) S)
(declare-fun sum (S S) S)
(declare-fun leq (S S) Bool)
(declare-fun negation (S) S)
(declare-fun test (S) Bool)
(assert (forall ((x S) (y S)) (= (sum x y) (sum y x ))))
(assert (forall ((x S) (y S) (z S)) (= (sum (sum x y) z) (sum x (sum y z)))))
(assert (forall ((x S)) (= (sum O x) x)))
(assert (forall ((x S)) (= (sum x x) x)))
(assert (forall ((x S) (y S) (z S)) (= (mult (mult x y) z) (mult x (mult y z)))))
(assert (forall ((x S)) (= (mult e x) x)))
(assert (forall ((x S)) (= (mult x e) x)))
(assert (forall ((x S) (y S) (z S)) (= (mult x (sum y z) ) (sum (mult x y) (mult x z)))))
(assert (forall ((x S) (y S) (z S)) (= (mult (sum x y) z ) (sum (mult x z) (mult y z)))))
(assert (forall ((x S)) (= (mult x O) O)))
(assert (forall ((x S)) (= (mult O x) O)))
(assert (forall ((x S) (y S)) (= (leq x y) (= (sum x y) y))))
(assert (forall ((x S) (y S)) (=> (and (test x) (test y) ) (= (mult x y) (mult y x))) ) )
(assert (forall ((x S)) (=> (test x) (= (sum x (negation x)) e) )))
(assert (forall ((x S)) (=> (test x) (= (mult x (negation x)) O) )))
(check-sat)
(push)
;; bpq + b`pr = p(bq + b`r)
(declare-fun b () S)
(declare-fun p () S)
(declare-fun q () S)
(declare-fun r () S)
(assert (=> (test b) (= (mult p b) (mult b p)) ))
(assert (=> (test b) (= (mult p (negation b)) (mult (negation b) p))))
(check-sat)
(assert (not (=> (test b) (= (sum (mult b (mult p q)) (mult (negation b) (mult p r) ))
(mult p (sum (mult b q) (mult (negation b) r))))) ) )
(check-sat)
(pop)
(echo "Proved: bpq + b`pr = p(bq + b`r)")
Выход
sat
sat
unsat
Proved: bpq + b`pr = p(bq + b`r)
Пожалуйста, запустите это доказательство онлайн здесь
Второе уравнение косвенно доказывается с использованием Z3 со следующей процедурой
Эта косвенная процедура реализована с помощью следующего кода SMT-LIB
(declare-sort S)
(declare-fun e () S)
(declare-fun O () S)
(declare-fun mult (S S) S)
(declare-fun sum (S S) S)
(declare-fun leq (S S) Bool)
(declare-fun negation (S) S)
(declare-fun test (S) Bool)
(assert (forall ((x S) (y S)) (= (sum x y) (sum y x ))))
(assert (forall ((x S) (y S) (z S)) (= (sum (sum x y) z) (sum x (sum y z)))))
(assert (forall ((x S)) (= (sum O x) x)))
(assert (forall ((x S)) (= (sum x x) x)))
(assert (forall ((x S) (y S) (z S)) (= (mult (mult x y) z) (mult x (mult y z)))))
(assert (forall ((x S)) (= (mult e x) x)))
(assert (forall ((x S)) (= (mult x e) x)))
(assert (forall ((x S) (y S) (z S)) (= (mult x (sum y z) ) (sum (mult x y) (mult x z)))))
(assert (forall ((x S) (y S) (z S)) (= (mult (sum x y) z ) (sum (mult x z) (mult y z)))))
(assert (forall ((x S)) (= (mult x O) O)))
(assert (forall ((x S)) (= (mult O x) O)))
(assert (forall ((x S) (y S)) (= (leq x y) (= (sum x y) y))))
(assert (forall ((x S) (y S)) (=> (and (test x) (test y) ) (= (mult x y) (mult y x))) ) )
(assert (forall ((x S)) (=> (test x) (= (sum x (negation x)) e) )))
(assert (forall ((x S)) (=> (test x) (= (mult x (negation x)) O) )))
(assert (forall ((x S)) (=> (test x) (test (negation x)) )) )
(assert (forall ((x S)) (=> (test x) (= (mult x x) x) )) )
(check-sat)
(push)
(declare-fun c () S)
(declare-fun b () S)
(declare-fun p () S)
(declare-fun q () S)
(declare-fun r () S)
(check-sat)
(assert (not (=> (and (test b) (test c))
(= (mult (sum (mult b c) (mult (negation b) (negation c)))
(sum (mult b (mult p q)) (mult (negation b) (mult p r) ) ))
(sum (mult b (mult c (mult p q)))
(mult (negation b) (mult (negation c) (mult p r) ) ) ))) ) )
(check-sat)
(pop)
(echo "Proved: part 1")
(push)
;;
(assert (=> (test c) (= (mult p c) (mult c p)) ))
(assert (=> (test c) (= (mult p (negation c)) (mult (negation c) p))))
(check-sat)
(assert (not (=> (test c)
(= (mult (sum (mult b c) (mult (negation b) (negation c)))
(mult p (sum (mult c q) (mult (negation c) r))))
(sum (mult b (mult c (mult p q)))
(mult (negation b) (mult (negation c) (mult p r) ) ) ))) ) )
(check-sat)
(pop)
(echo "Proved: part 2")
и соответствующий вывод
sat
sat
unsat
Proved: part 1
sat
unsat
Proved: part 2
Этот вывод получается локально. Когда код выполняется онлайн, вывод
sat
sat
unsat
Proved: part 1
sat
timeout
Пожалуйста, запустите этот пример онлайн здесь
Z3 не может доказать второе уравнение напрямую, но Mathematica и Reduce anable.