Как убрать дефекты выпуклости на площади Судоку?
Я занимался веселым проектом: Решением судоку из входного изображения с использованием OpenCV (как в Google Goggles и т. Д.). И я выполнил задание, но в конце обнаружил небольшую проблему, ради которой я пришел сюда.
Я занимался программированием с использованием Python API OpenCV 2.3.1.
Ниже то, что я сделал:
- Прочитайте изображение
- Найти контуры
- Выберите тот, который имеет максимальную площадь, (а также несколько эквивалентен квадрату).
Найдите угловые точки.
например, дано ниже:
(Обратите внимание, что зеленая линия правильно совпадает с истинной границей судоку, поэтому судоку можно правильно деформировать. Проверьте следующее изображение)
деформировать изображение в идеальный квадрат
например, изображение:
Выполнить OCR (для которого я использовал метод, который я дал в Простом распознавании цифр OCR в OpenCV-Python)
И метод работал хорошо.
Проблема:
Проверьте это изображение.
Выполнение шага 4 на этом изображении дает следующий результат:
Красная линия - это оригинальный контур, который является истинным контуром границы судоку.
Нарисованная зеленая линия представляет собой приблизительный контур, который будет контуром искривленного изображения.
Что, конечно, есть разница между зеленой линией и красной линией на верхнем краю судоку. Таким образом, пока я не искажаю исходную границу Судоку.
Мой вопрос:
Как можно деформировать изображение на правильной границе судоку, то есть на красной линии ИЛИ как убрать разницу между красной линией и зеленой линией? Есть ли способ для этого в OpenCV?
4 ответа
У меня есть решение, которое работает, но вам придется самостоятельно перевести его на OpenCV. Это написано в Mathematica.
Первый шаг - настроить яркость изображения, разделив каждый пиксель в результате операции закрытия:
src = ColorConvert[Import["http://davemark.com/images/sudoku.jpg"], "Grayscale"];
white = Closing[src, DiskMatrix[5]];
srcAdjusted = Image[ImageData[src]/ImageData[white]]
Следующий шаг - найти область судоку, чтобы я мог игнорировать (маскировать) фон. Для этого я использую анализ связанных компонентов и выбираю компонент с наибольшей выпуклой областью:
components =
ComponentMeasurements[
ColorNegate@Binarize[srcAdjusted], {"ConvexArea", "Mask"}][[All,
2]];
largestComponent = Image[SortBy[components, First][[-1, 2]]]
Заполняя это изображение, я получаю маску для сетки судоку:
mask = FillingTransform[largestComponent]
Теперь я могу использовать производный фильтр 2-го порядка, чтобы найти вертикальные и горизонтальные линии в двух отдельных изображениях:
lY = ImageMultiply[MorphologicalBinarize[GaussianFilter[srcAdjusted, 3, {2, 0}], {0.02, 0.05}], mask];
lX = ImageMultiply[MorphologicalBinarize[GaussianFilter[srcAdjusted, 3, {0, 2}], {0.02, 0.05}], mask];
Я снова использую анализ связанных компонентов, чтобы извлечь линии сетки из этих изображений. Линии сетки намного длиннее цифр, поэтому я могу использовать длину штангенциркуля для выбора только компонентов, соединенных линиями сетки. Сортируя их по положению, я получаю маски 2х10 для каждой вертикальной / горизонтальной линии сетки на изображении:
verticalGridLineMasks =
SortBy[ComponentMeasurements[
lX, {"CaliperLength", "Centroid", "Mask"}, # > 100 &][[All,
2]], #[[2, 1]] &][[All, 3]];
horizontalGridLineMasks =
SortBy[ComponentMeasurements[
lY, {"CaliperLength", "Centroid", "Mask"}, # > 100 &][[All,
2]], #[[2, 2]] &][[All, 3]];
Затем я беру каждую пару вертикальных / горизонтальных линий сетки, расширяю их, вычисляю попиксельное пересечение и вычисляю центр результата. Эти точки являются пересечениями линий сетки:
centerOfGravity[l_] :=
ComponentMeasurements[Image[l], "Centroid"][[1, 2]]
gridCenters =
Table[centerOfGravity[
ImageData[Dilation[Image[h], DiskMatrix[2]]]*
ImageData[Dilation[Image[v], DiskMatrix[2]]]], {h,
horizontalGridLineMasks}, {v, verticalGridLineMasks}];
Последний шаг - определить две функции интерполяции для отображения X/Y через эти точки и преобразовать изображение с помощью этих функций:
fnX = ListInterpolation[gridCenters[[All, All, 1]]];
fnY = ListInterpolation[gridCenters[[All, All, 2]]];
transformed =
ImageTransformation[
srcAdjusted, {fnX @@ Reverse[#], fnY @@ Reverse[#]} &, {9*50, 9*50},
PlotRange -> {{1, 10}, {1, 10}}, DataRange -> Full]
Все операции являются основной функцией обработки изображений, поэтому это должно быть возможно и в OpenCV. Преобразование изображений на основе сплайнов может быть сложнее, но я не думаю, что оно вам действительно нужно. Возможно, использование трансформации перспективы, которую вы используете сейчас в каждой отдельной ячейке, даст достаточно хорошие результаты.
Ответ Ники решил мою проблему, но он был в Mathematica. Так что я подумал, что мне следует дать здесь адаптацию OpenCV. Но после реализации я увидел, что код OpenCV намного больше, чем код mathematica nikie. Кроме того, я не смог найти метод интерполяции, сделанный nikie в OpenCV (хотя это можно сделать с помощью scipy, я скажу это, когда придет время).
1. Предварительная обработка изображения (операция закрытия)
import cv2
import numpy as np
img = cv2.imread('dave.jpg')
img = cv2.GaussianBlur(img,(5,5),0)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
mask = np.zeros((gray.shape),np.uint8)
kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
div = np.float32(gray)/(close)
res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
Результат:
2. Найти площадь Судоку и создать изображение маски
thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
best_cnt = None
for cnt in contour:
area = cv2.contourArea(cnt)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = cnt
cv2.drawContours(mask,[best_cnt],0,255,-1)
cv2.drawContours(mask,[best_cnt],0,0,2)
res = cv2.bitwise_and(res,mask)
Результат:
3. Нахождение вертикальных линий
kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
dx = cv2.Sobel(res,cv2.CV_16S,1,0)
dx = cv2.convertScaleAbs(dx)
cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if h/w > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
closex = close.copy()
Результат:
4. Нахождение горизонтальных линий
kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
dy = cv2.Sobel(res,cv2.CV_16S,0,2)
dy = cv2.convertScaleAbs(dy)
cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if w/h > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
closey = close.copy()
Результат:
Конечно, этот не так хорош.
5. Нахождение точек сетки
res = cv2.bitwise_and(closex,closey)
Результат:
6. Исправление дефектов
Здесь Ники делает какую-то интерполяцию, о которой я мало что знаю. И я не мог найти соответствующую функцию для этого OpenCV. (может быть, это там, я не знаю).
Проверьте этот SOF, который объясняет, как сделать это с помощью SciPy, который я не хочу использовать: Преобразование изображений в OpenCV
Итак, здесь я взял 4 угла каждого квадрата и применил перспективу деформации к каждому.
Для этого сначала мы найдем центроиды.
contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids = []
for cnt in contour:
mom = cv2.moments(cnt)
(x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
cv2.circle(img,(x,y),4,(0,255,0),-1)
centroids.append((x,y))
Но получившиеся центроиды не будут отсортированы. Проверьте ниже изображение, чтобы увидеть их порядок:
Поэтому мы сортируем их слева направо, сверху вниз.
centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]
b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in xrange(10)])
bm = b.reshape((10,10,2))
Теперь смотрите ниже их порядок:
Наконец мы применяем преобразование и создаем новое изображение размером 450x450.
output = np.zeros((450,450,3),np.uint8)
for i,j in enumerate(b):
ri = i/10
ci = i%10
if ci != 9 and ri!=9:
src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
retval = cv2.getPerspectiveTransform(src,dst)
warp = cv2.warpPerspective(res2,retval,(450,450))
output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
Результат:
Результат почти такой же, как у nikie, но длина кода велика. Может быть, есть лучшие методы, но до тех пор это работает хорошо.
С уважением ARK.
Вы можете попробовать использовать какое-то сеточное моделирование произвольной деформации. А поскольку судоку уже является сеткой, это не должно быть слишком сложно.
Таким образом, вы можете попытаться определить границы каждого субрегиона 3х3, а затем деформировать каждый регион в отдельности. Если обнаружение пройдет успешно, это даст вам лучшее приближение.
Я подумал, что это отличный пост и отличное решение от ARK; очень хорошо изложено и объяснено.
Я работал над аналогичной проблемой и построил все. Были внесены некоторые изменения (например, xrange to range, аргументы в cv2.findContours), но это должно работать из коробки (Python 3.5, Anaconda).
Это компиляция вышеперечисленных элементов с добавлением некоторого недостающего кода (например, маркировка точек).
'''
https://stackru.com/questions/10196198/how-to-remove-convexity-defects-in-a-sudoku-square
'''
import cv2
import numpy as np
img = cv2.imread('test.png')
winname="raw image"
cv2.namedWindow(winname)
cv2.imshow(winname, img)
cv2.moveWindow(winname, 100,100)
img = cv2.GaussianBlur(img,(5,5),0)
winname="blurred"
cv2.namedWindow(winname)
cv2.imshow(winname, img)
cv2.moveWindow(winname, 100,150)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
mask = np.zeros((gray.shape),np.uint8)
kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
winname="gray"
cv2.namedWindow(winname)
cv2.imshow(winname, gray)
cv2.moveWindow(winname, 100,200)
close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
div = np.float32(gray)/(close)
res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
winname="res2"
cv2.namedWindow(winname)
cv2.imshow(winname, res2)
cv2.moveWindow(winname, 100,250)
#find elements
thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
img_c, contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
best_cnt = None
for cnt in contour:
area = cv2.contourArea(cnt)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = cnt
cv2.drawContours(mask,[best_cnt],0,255,-1)
cv2.drawContours(mask,[best_cnt],0,0,2)
res = cv2.bitwise_and(res,mask)
winname="puzzle only"
cv2.namedWindow(winname)
cv2.imshow(winname, res)
cv2.moveWindow(winname, 100,300)
# vertical lines
kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
dx = cv2.Sobel(res,cv2.CV_16S,1,0)
dx = cv2.convertScaleAbs(dx)
cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
img_d, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if h/w > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
closex = close.copy()
winname="vertical lines"
cv2.namedWindow(winname)
cv2.imshow(winname, img_d)
cv2.moveWindow(winname, 100,350)
# find horizontal lines
kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
dy = cv2.Sobel(res,cv2.CV_16S,0,2)
dy = cv2.convertScaleAbs(dy)
cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
img_e, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if w/h > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
closey = close.copy()
winname="horizontal lines"
cv2.namedWindow(winname)
cv2.imshow(winname, img_e)
cv2.moveWindow(winname, 100,400)
# intersection of these two gives dots
res = cv2.bitwise_and(closex,closey)
winname="intersections"
cv2.namedWindow(winname)
cv2.imshow(winname, res)
cv2.moveWindow(winname, 100,450)
# text blue
textcolor=(0,255,0)
# points green
pointcolor=(255,0,0)
# find centroids and sort
img_f, contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids = []
for cnt in contour:
mom = cv2.moments(cnt)
(x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
cv2.circle(img,(x,y),4,(0,255,0),-1)
centroids.append((x,y))
# sorting
centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]
b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in range(10)])
bm = b.reshape((10,10,2))
# make copy
labeled_in_order=res2.copy()
for index, pt in enumerate(b):
cv2.putText(labeled_in_order,str(index),tuple(pt),cv2.FONT_HERSHEY_DUPLEX, 0.75, textcolor)
cv2.circle(labeled_in_order, tuple(pt), 5, pointcolor)
winname="labeled in order"
cv2.namedWindow(winname)
cv2.imshow(winname, labeled_in_order)
cv2.moveWindow(winname, 100,500)
# create final
output = np.zeros((450,450,3),np.uint8)
for i,j in enumerate(b):
ri = int(i/10) # row index
ci = i%10 # column index
if ci != 9 and ri!=9:
src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
retval = cv2.getPerspectiveTransform(src,dst)
warp = cv2.warpPerspective(res2,retval,(450,450))
output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
winname="final"
cv2.namedWindow(winname)
cv2.imshow(winname, output)
cv2.moveWindow(winname, 600,100)
cv2.waitKey(0)
cv2.destroyAllWindows()
Для удаления незапятнанных углов я применил гамма-коррекцию со значением гаммы 0,8.
Красный круг нарисован, чтобы показать недостающий угол.
Код является:
gamma = 0.8
invGamma = 1/gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
cv2.LUT(img, table, img)
Это в дополнение к ответу Абида Рахмана, если отсутствуют некоторые угловые точки.
Я хочу добавить, что описанный выше метод работает только в том случае, если доска судоку стоит прямо, в противном случае проверка соотношения высоты / ширины (или наоборот), скорее всего, провалится, и вы не сможете обнаружить края судоку. (Я также хочу добавить, что если линии, которые не перпендикулярны границам изображения, операции sobel (dx и dy) будут по-прежнему работать, так как линии будут по-прежнему иметь края относительно обеих осей.)
Чтобы иметь возможность обнаруживать прямые линии, вы должны работать с контурным или пиксельным анализом, таким как contourArea / boundingRectArea, верхняя левая и нижняя правая точки...
Изменить: мне удалось проверить, образует ли набор контуров линию или нет, применив линейную регрессию и проверив ошибку. Однако линейная регрессия выполняется плохо, когда наклон линии слишком велик (т. Е. >1000) или очень близок к 0. Поэтому применение вышеуказанного критерия отношения (в ответе с наибольшим количеством голосов) перед линейной регрессией логично и сработало для меня.