Python Matplotlib: центрирующая фигура вокруг движущегося художника

Я задал этот вопрос раньше, очень плохо, поэтому я попытаюсь вдаваться в подробности.

Я сделал несколько программ планетарной орбиты, и я хотел бы знать, смогу ли я сосредоточить фигуру вокруг художника, который меняет положение, так что окно фигуры перемещается вместо того, чтобы оставаться в (0,0)

Так что, если центр художника определен в simData примерно так:

planet1.center = x1,y1

Я предполагаю, что где-то должно быть что-то вроде этого:

ax = plt.axes(xlim=(x1-430000000, x1+430000000), ylim=(y1-430000000, y1+430000000))

Что я не могу сделать, потому что я не могу вызвать эти переменные. Кроме того, оси и фигура определяются только один раз в начале программы.

Вот мой код, 4 планеты в орбитальном движении:

import numpy as np
import matplotlib.pyplot as plt
import math
import matplotlib.animation as animation
import pdb

er = 6378100#m
mr = 1737400#m
sr = 696000000
em = 2*5.97219*10**24#kg
mm = 7.34767309*10**22#kg
sm = 1.989*10**30
sed = 150000000000
emd = 384400000

m1 = em
m2 = mm*4
m3 = mm*2
m4 = mm*3
r1 = mr*10*6
r2 = mr*10*3
r3 = mr*10*1.2
r4 = mr*10*2
nts = 10000
ts = 10000
G = 6.67384*10**(-11)


def simData():
    tmax = ts*nts
    t = 0
    x = 0
    x1 = 384400000*0.8*0
    y1 = 384400000*0.8*0
    x2 = 384400000*0.8
    y2 = -384400000*0.8*0
    x3 = -384400000*0.8
    y3 = 384400000*0.8*0
    x4 = -384400000*0.8*0
    y4 = -384400000*0.8
    Vx1 = 0
    Vy1 = 0
    Vx2 = 800
    Vy2 = 1700
    Vx3 = 0
    Vy3 = -1500
    Vx4 = 2000
    Vy4 = 0
    d12 = math.sqrt((x1-x2)**2+(y1-y2)**2)
    d23 = math.sqrt((x2-x3)**2+(y2-y3)**2)
    d13 = math.sqrt((x1-x3)**2+(y1-y3)**2)
    d14 = math.sqrt((x1-x4)**2+(y1-y4)**2)
    d24 = math.sqrt((x2-x4)**2+(y2-y4)**2)
    d34 = math.sqrt((x3-x4)**2+(y3-y4)**2)
    while t < tmax:
        Fg12 = G*(m1*m2)/d12**2
        Fgx12 = -Fg12*((x1-x2))/d12
        Fgy12 = -Fg12*((y1-y2))/d12

        Fgx21 = -Fg12*((x2-x1))/d12
        Fgy21 = -Fg12*((y2-y1))/d12

        Fg13 = G*(m1*m3)/d13**2
        Fgx13 = -Fg13*((x1-x3))/d13
        Fgy13 = -Fg13*((y1-y3))/d13

        Fgx31 = -Fg13*((x3-x1))/d13
        Fgy31 = -Fg13*((y3-y1))/d13

        Fg23 = G*(m3*m2)/d23**2
        Fgx23 = -Fg23*((x2-x3))/d23
        Fgy23 = -Fg23*((y2-y3))/d23

        Fgx32 = -Fg23*((x3-x2))/d23
        Fgy32 = -Fg23*((y3-y2))/d23

        Fg14 = G*(m1*m4)/d14**2
        Fgx14 = -Fg14*((x1-x4))/d14
        Fgy14 = -Fg14*((y1-y4))/d14

        Fgx41 = -Fg14*((x4-x1))/d14
        Fgy41 = -Fg14*((y4-y1))/d14

        Fg24 = G*(m2*m4)/d24**2
        Fgx24 = -Fg24*((x2-x4))/d24
        Fgy24 = -Fg24*((y2-y4))/d24

        Fgx42 = -Fg24*((x4-x2))/d24
        Fgy42 = -Fg24*((x4-x2))/d24

        Fg34 = G*(m3*m4)/d34**2
        Fgx34 = -Fg34*((x3-x4))/d34
        Fgy34 = -Fg34*((y3-y4))/d34

        Fgx43 = -Fg34*((x4-x3))/d34
        Fgy43 = -Fg34*((y4-y3))/d34

        Ax1 = Fgx12/m1 + Fgx13/m1 + Fgx14/m1
        Ay1 = Fgy12/m1 + Fgy13/m1 + Fgy14/m1

        Ax2 = Fgx21/m2 + Fgx23/m2 + Fgx24/m2
        Ay2 = Fgy21/m2 + Fgy23/m2 + Fgy24/m2

        Ax3 = Fgx32/m3 + Fgx31/m3 + Fgx34/m3
        Ay3 = Fgy32/m3 + Fgy31/m3 + Fgy34/m3

        Ax4 = Fgx41/m4 + Fgx42/m4 + Fgx43/m4
        Ay4 = Fgy41/m4 + Fgy42/m4 + Fgx43/m4

        Vx1 = Vx1+Ax1*ts
        Vy1 = Vy1+Ay1*ts

        Vx2 = Vx2+Ax2*ts
        Vy2 = Vy2+Ay2*ts

        Vx3 = Vx3+Ax3*ts
        Vy3 = Vy3+Ay3*ts

        Vx4 = Vx4+Ax4*ts
        Vy4 = Vy4+Ay4*ts

        x1 = x1 + Vx1*ts
        y1 = y1 + Vy1*ts

        x2 = x2 + Vx2*ts
        y2 = y2 + Vy2*ts

        x3 = x3 + Vx3*ts
        y3 = y3 + Vy3*ts

        x4 = x4 + Vx4*ts
        y4 = y4 + Vy4*ts

        planet1.center = x1,y1
        planet2.center = x2,y2
        planet3.center = x3,y3
        planet4.center = x4,y4

        d12 = math.sqrt((x1-x2)**2+(y1-y2)**2)
        d23 = math.sqrt((x2-x3)**2+(y2-y3)**2)
        d13 = math.sqrt((x1-x3)**2+(y1-y3)**2)
        d14 = math.sqrt((x1-x4)**2+(y1-y4)**2)
        d24 = math.sqrt((x2-x4)**2+(y2-y4)**2)
        d34 = math.sqrt((x3-x4)**2+(y3-y4)**2)

        t = t+ts

        yield x, t

def simPoints(simData):
    x, t = simData[0], simData[1]
    time_text.set_text(time_template%(t))
    line.set_data(t, x)
    return line, time_text

fig = plt.figure()
ax = plt.axes(xlim=(-430000000, 430000000), ylim=(-430000000, 430000000))
ax.set_aspect("equal")
line, = ax.plot([], [], '', ms=10)



planet1 = plt.Circle((0,0), r1, facecolor=(0,0,1))
ax.add_artist(planet1)

planet2 = plt.Circle((0,0), r2, facecolor=(1,0,0))
ax.add_artist(planet2)

planet3 = plt.Circle((0,0), r3, facecolor=(1,1,0))
ax.add_artist(planet3)

planet4 = plt.Circle((0,0), r4, facecolor=(0,1,0))
ax.add_artist(planet4)

time_template = 'Time = %.1f s'    # prints running simulation time
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)

ani = animation.FuncAnimation(fig, simPoints, simData, blit=False,\
     interval=10, repeat=True)

plt.show()

1 ответ

Решение

Предполагая, что вы на самом деле просто хотите настроить пределы осей, чтобы "следовать" за одной из ваших планет, вы можете получить доступ к центру планеты, как и вы, чтобы назначить его - все планеты и оси являются глобальными переменными.

Эти модификации simPoints держит голубую планету в центре ваших осей.

def simPoints(simData):
    x, t = simData[0], simData[1]
    time_text.set_text(time_template%(t))
    line.set_data(t, x)
    ctr = planet1.center
    ax.set_xlim(ctr[0]-430000000, ctr[0]+430000000)
    ax.set_ylim(ctr[1]-430000000, ctr[1]+430000000)
    return line, time_text
Другие вопросы по тегам