Потери при обучении и при проверке всегда равны нулю

Я только недавно начал изучать CNN и tenorflow. И я встретил один случай при тестировании полностью сверточной сети (на основе VGG16), в котором я обнаружил, что как потери при обучении, так и потери при проверке равны нулю и никогда не меняются. Таким образом, сеть никогда не сможет узнать какие-либо положительные черты. Надеюсь, кто-нибудь может сказать мне, что происходит в моей сети.

Точность и потери нанесены на тензорную доску

Я реализовал сеть с последней версией tflearn (напрямую с github). На слоях conv5 я использовал atrous_conv_2d вместо conv_2d и объединил первые четыре слоя пула и последний полностью сверточный слой после их апсэмплинга до одного масштаба (используя upscore_layer).

Код показан ниже. Кстати, то, что я делаю, - это реализация FCN, предложенного в этой статье ( http://i.cs.hku.hk/~gbli/deep_saliency.html), с использованием tflearn или tenorflow.

import tensorflow as tf
import tflearn

from tflearn.layers.core import input_data, dropout, fully_connected, activation
from tflearn.layers.conv import conv_2d, max_pool_2d, atrous_conv_2d, upscore_layer
from tflearn.layers.merge_ops import merge
from tflearn.layers.normalization import local_response_normalization,batch_normalization
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation

def InitMSFCN(t_xWSize,t_xHSize,t_channel=1,img_aug=None,img_prep=None, l_rate = 0.0002): 

    data = input_data(shape=[None, t_xHSize, t_xWSize, t_channel],
                    data_augmentation=img_aug,
                    data_preprocessing=img_prep)

    data_conv = conv_2d(data, 128, 3, strides=1, activation='relu', name='data_conv')
    data_conv = dropout(data_conv, 0.5, name='drop_data_conv')
    data_fc = conv_2d(data_conv, 128, 1, strides=1, activation='relu', name='data_fc')
    data_fc = dropout(data_fc, 0.5, name='drop_data_fc')
    data_ms_silhouette = conv_2d(data_fc, 1, 1, name='data_ms_silhouette')

    conv1_1 = conv_2d(data, 64, 3, activation='relu', name='conv1_1')
    conv1_2 = conv_2d(conv1_1, 64, 3, activation='relu', name='conv1_2')
    pool1 = max_pool_2d(conv1_2, 3, strides=2, name='pool1')

    pool1_conv = conv_2d(pool1, 128, 3, strides=1, activation='relu', name='pool1_conv')
    pool1_conv = dropout(pool1_conv, 0.5, name='drop_pool1_conv')
    pool1_fc = conv_2d(pool1_conv, 128, 1, activation='relu', name='pool1_fc')
    pool1_fc = dropout(pool1_fc, 0.5, name='drop_pool1_fc')
    pool1_ms_silhouette = conv_2d(pool1_fc, 1, 1, name='pool1_ms_silhouette')

    conv2_1 = conv_2d(pool1, 128, 3, activation='relu', name='conv2_1')
    conv2_2 = conv_2d(conv2_1, 128, 3, activation='relu', name='conv2_2')
    pool2 = max_pool_2d(conv2_2, 3, strides=2, name='pool2')

    pool2_conv = conv_2d(pool2, 128, 3, strides=1, activation='relu', name='pool2_conv')
    pool2_conv = dropout(pool2_conv, 0.5, name='drop_pool2_conv')
    pool2_fc = conv_2d(pool2_conv, 128, 1, activation='relu', name='pool2_fc')
    pool2_fc = dropout(pool2_fc, 0.5, name='drop_pool2_fc')
    pool2_ms_silhouette = conv_2d(pool2_fc, 1, 1, name='pool2_ms_silhouette')

    conv3_1 = conv_2d(pool2, 256, 3, activation='relu', name='conv3_1')
    conv3_2 = conv_2d(conv3_1, 256, 3, activation='relu', name='conv3_2')
    conv3_3 = conv_2d(conv3_2, 256, 3, activation='relu', name='conv3_3')
    pool3 = max_pool_2d(conv3_3, 3, strides=2, name='pool3')

    pool3_conv = conv_2d(pool3, 128, 3, strides=1, activation='relu', name='pool3_conv')
    pool3_conv = dropout(pool3_conv, 0.5, name='drop_pool3_conv')
    pool3_fc = conv_2d(pool3_conv, 128, 1, strides=1, activation='relu', name='pool3_fc')
    pool3_fc = dropout(pool3_fc, 0.5, name='drop_pool3_fc')
    pool3_ms_silhouette = conv_2d(pool3_fc, 1, 1, name='pool3_ms_silhouette')

    conv4_1 = conv_2d(pool3, 512, 3, activation='relu', name='conv4_1')
    conv4_2 = conv_2d(conv4_1, 512, 3, activation='relu', name='conv4_2')
    conv4_3 = conv_2d(conv4_2, 512, 3, activation='relu', name='conv4_3')
    pool4 = max_pool_2d(conv4_3, 3, strides=1, name='pool4')

    pool4_conv = conv_2d(pool4, 128, 3, strides=1, activation='relu', name='pool4_conv')
    pool4_conv = dropout(pool4_conv, 0.5, name='drop_pool4_conv')
    pool4_fc = conv_2d(pool4_conv, 128, 1, strides=1, activation='relu', name='pool4_fc')
    pool4_fc = dropout(pool4_fc, 0.5, name='drop_pool4_fc')
    pool4_ms_silhouette = conv_2d(pool4_fc, 1, 1, name='pool4_ms_silhouette')

    conv5_1 = atrous_conv_2d(pool4, 512, 3, rate=2, activation='relu', name='conv5_1')
    conv5_2 = atrous_conv_2d(conv5_1, 512, 3, rate=2, activation='relu', name='conv5_2')
    conv5_3 = atrous_conv_2d(conv5_2, 512, 3, rate=2, activation='relu', name='conv5_3')
    pool5 = max_pool_2d(conv5_3, 3, strides=1, name='pool5')

    fc6 = atrous_conv_2d(pool5, 4096, 4, rate=4, activation='relu', name='fc6')
    fc6 = dropout(fc6, 0.5, name='drop6')

    fc7 = conv_2d(fc6, 4096, 1, activation='relu', name='fc7')
    fc7 = dropout(fc7, 0.5, name='drop7')

    fc8_silhouette = conv_2d(fc7, 1, 1, name='fc7')

    pool1_interp = upscore_layer(pool1_ms_silhouette, 1, strides=2, shape=tf.shape(data_ms_silhouette))
    pool2_interp = upscore_layer(pool2_ms_silhouette, 1, strides=4, shape=tf.shape(data_ms_silhouette))
    pool3_interp = upscore_layer(pool3_ms_silhouette, 1, strides=8, shape=tf.shape(data_ms_silhouette))
    pool4_interp = upscore_layer(pool4_ms_silhouette, 1, strides=8, shape=tf.shape(data_ms_silhouette))
    fc8_interp = upscore_layer(fc8_silhouette, 1, strides=8, shape=tf.shape(data_ms_silhouette))

    fc_fusion = merge([data_ms_silhouette,pool1_interp,pool2_interp,pool3_interp,pool4_interp,fc8_interp], 'elemwise_sum', 0, name='fc_fusion')
    fc_silhouette_reg = activation(fc_fusion, activation='sigmoid', name='fc_silhouette_reg')

    network = regression(fc_silhouette_reg, optimizer='adam',loss='categorical_crossentropy',
                 learning_rate=l_rate, name='fc_silhouette')

    return network

if __name__ == '__main__': 
    # Real-time data preprocessing
    img_prep = ImagePreprocessing()
    img_prep.add_featurewise_zero_center()
    img_prep.add_featurewise_stdnorm()

    network = InitMSFCN(104,136,3,img_prep=img_prep)
    model = tflearn.DNN(network,best_checkpoint_path='./bestCheck/',max_checkpoints=100,tensorboard_verbose=3)

    from glob import glob
    from os.path import join
    import cv2
    import numpy as np
    imgs = []
    labels = []
    img_paths = glob(join('./ori','*.jpg'))
    for img_path in img_paths:
        name = img_path.split('/')[-1]
        print name
        label_path = join('./sil',name)
        img=cv2.imread(img_path)
        label = cv2.imread(label_path,0)
        imgs.append(img)
        labels.append(label)
    imgs = np.array(imgs).astype('float64')
    labels = np.array(labels)
    labels.shape=(labels.shape[0],labels.shape[1],labels.shape[2],1)
    print imgs.shape
    print labels.shape

    model.fit(X_inputs = imgs, Y_targets = labels, n_epoch=2000,snapshot_step=10000, batch_size=16, validation_set=0.2,
        snapshot_epoch=False, shuffle=True, show_metric=True, run_id='MSFCN')

Заранее спасибо,

Чжэ

0 ответов

Другие вопросы по тегам