Как эффективно использовать Rprof в R?
Я хотел бы знать, возможно ли получить профиль от R
-Кодировать таким образом, что похоже на matlab
Профилировщик. То есть, чтобы узнать, какие номера строк являются особенно медленными.
То, чего я достиг до сих пор, как-то не удовлетворительно. я использовал Rprof
сделать мне файл профиля. С помощью summaryRprof
Я получаю что-то вроде следующего:
$by.self self.time self.pct total.time total.pct [.data.frame 0.72 10.1 1.84 25.8 inherits 0.50 7.0 1.10 15.4 data.frame 0.48 6.7 4.86 68.3 unique.default 0.44 6.2 0.48 6.7 deparse 0.36 5.1 1.18 16.6 rbind 0.30 4.2 2.22 31.2 match 0.28 3.9 1.38 19.4 [<-.factor 0.28 3.9 0.56 7.9 levels 0.26 3.7 0.34 4.8 NextMethod 0.22 3.1 0.82 11.5 ...
а также
$by.total total.time total.pct self.time self.pct data.frame 4.86 68.3 0.48 6.7 rbind 2.22 31.2 0.30 4.2 do.call 2.22 31.2 0.00 0.0 [ 1.98 27.8 0.16 2.2 [.data.frame 1.84 25.8 0.72 10.1 match 1.38 19.4 0.28 3.9 %in% 1.26 17.7 0.14 2.0 is.factor 1.20 16.9 0.10 1.4 deparse 1.18 16.6 0.36 5.1 ...
Если честно, из этого вывода я не понимаю, где мои узкие места, потому что (а) я использую data.frame
довольно часто и (б) я никогда не использую, например, deparse
, Кроме того, что [
?
Поэтому я попробовал Хэдли Уикхема profr
, но это было бесполезно, учитывая следующий график:
Есть ли более удобный способ узнать, какие номера строк и конкретные вызовы функций медленные?
Или есть какая-то литература, с которой мне следует ознакомиться?
Любые намеки приветствуются.
РЕДАКТИРОВАТЬ 1:
Основываясь на комментарии Хэдли, я вставлю код моего сценария ниже и базовую версию графика. Но учтите, что мой вопрос не связан с этим конкретным сценарием. Это просто случайный сценарий, который я недавно написал. Я ищу общий способ, как найти узкие места и ускорить R
-код.
Данные (x
) выглядит так:
type word response N Classification classN Abstract ANGER bitter 1 3a 3a Abstract ANGER control 1 1a 1a Abstract ANGER father 1 3a 3a Abstract ANGER flushed 1 3a 3a Abstract ANGER fury 1 1c 1c Abstract ANGER hat 1 3a 3a Abstract ANGER help 1 3a 3a Abstract ANGER mad 13 3a 3a Abstract ANGER management 2 1a 1a ... until row 1700
Сценарий (с краткими пояснениями) таков:
Rprof("profile1.out") # A new dataset is produced with each line of x contained x$N times y <- vector('list',length(x[,1])) for (i in 1:length(x[,1])) { y[[i]] <- data.frame(rep(x[i,1],x[i,"N"]),rep(x[i,2],x[i,"N"]),rep(x[i,3],x[i,"N"]),rep(x[i,4],x[i,"N"]),rep(x[i,5],x[i,"N"]),rep(x[i,6],x[i,"N"])) } all <- do.call('rbind',y) colnames(all) <- colnames(x) # create a dataframe out of a word x class table table_all <- table(all$word,all$classN) dataf.all <- as.data.frame(table_all[,1:length(table_all[1,])]) dataf.all$words <- as.factor(rownames(dataf.all)) dataf.all$type <- "no" # get type of the word. words <- levels(dataf.all$words) for (i in 1:length(words)) { dataf.all$type[i] <- as.character(all[pmatch(words[i],all$word),"type"]) } dataf.all$type <- as.factor(dataf.all$type) dataf.all$typeN <- as.numeric(dataf.all$type) # aggregate response categories dataf.all$c1 <- apply(dataf.all[,c("1a","1b","1c","1d","1e","1f")],1,sum) dataf.all$c2 <- apply(dataf.all[,c("2a","2b","2c")],1,sum) dataf.all$c3 <- apply(dataf.all[,c("3a","3b")],1,sum) Rprof(NULL) library(profr) ggplot.profr(parse_rprof("profile1.out"))
Окончательные данные выглядят так:
1a 1b 1c 1d 1e 1f 2a 2b 2c 3a 3b pa words type typeN c1 c2 c3 pa 3 0 8 0 0 0 0 0 0 24 0 0 ANGER Abstract 1 11 0 24 0 6 0 4 0 1 0 0 11 0 13 0 0 ANXIETY Abstract 1 11 11 13 0 2 11 1 0 0 0 0 4 0 17 0 0 ATTITUDE Abstract 1 14 4 17 0 9 18 0 0 0 0 0 0 0 0 8 0 BARREL Concrete 2 27 0 8 0 0 1 18 0 0 0 0 4 0 12 0 0 BELIEF Abstract 1 19 4 12 0
Базовый график участка:
4 ответа
Оповещение читателей вчерашних новостей (R 3.0.0
наконец-то вышел), возможно, заметил что-то интересное, что имеет прямое отношение к этому вопросу:
- Профилирование через Rprof() теперь дополнительно записывает информацию на уровне выписки, а не только на уровне функции.
И действительно, эта новая функция отвечает на мой вопрос, и я покажу как.
Скажем, мы хотим сравнить, действительно ли векторизация и предварительное выделение ресурсов лучше, чем старые добрые циклы for и наращивание данных при вычислении итоговой статистики, такой как среднее значение. Относительно глупый код выглядит следующим образом:
# create big data frame:
n <- 1000
x <- data.frame(group = sample(letters[1:4], n, replace=TRUE), condition = sample(LETTERS[1:10], n, replace = TRUE), data = rnorm(n))
# reasonable operations:
marginal.means.1 <- aggregate(data ~ group + condition, data = x, FUN=mean)
# unreasonable operations:
marginal.means.2 <- marginal.means.1[NULL,]
row.counter <- 1
for (condition in levels(x$condition)) {
for (group in levels(x$group)) {
tmp.value <- 0
tmp.length <- 0
for (c in 1:nrow(x)) {
if ((x[c,"group"] == group) & (x[c,"condition"] == condition)) {
tmp.value <- tmp.value + x[c,"data"]
tmp.length <- tmp.length + 1
}
}
marginal.means.2[row.counter,"group"] <- group
marginal.means.2[row.counter,"condition"] <- condition
marginal.means.2[row.counter,"data"] <- tmp.value / tmp.length
row.counter <- row.counter + 1
}
}
# does it produce the same results?
all.equal(marginal.means.1, marginal.means.2)
Чтобы использовать этот код с Rprof
, мы должны parse
Это. То есть его нужно сохранить в файл и затем вызвать из него. Следовательно, я загрузил его в pastebin, но он работает точно так же с локальными файлами.
Теперь мы
- просто создайте файл профиля и укажите, что мы хотим сохранить номер строки,
- исходный код с невероятной комбинацией
eval(parse(..., keep.source = TRUE))
(казалось бы, печально известныйfortune(106)
здесь не распространяется, так как другого пути я не нашел) - остановите профилирование и укажите, что мы хотим вывод на основе номеров строк.
Код является:
Rprof("profile1.out", line.profiling=TRUE)
eval(parse(file = "http://pastebin.com/download.php?i=KjdkSVZq", keep.source=TRUE))
Rprof(NULL)
summaryRprof("profile1.out", lines = "show")
Который дает:
$by.self
self.time self.pct total.time total.pct
download.php?i=KjdkSVZq#17 8.04 64.11 8.04 64.11
<no location> 4.38 34.93 4.38 34.93
download.php?i=KjdkSVZq#16 0.06 0.48 0.06 0.48
download.php?i=KjdkSVZq#18 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#23 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#6 0.02 0.16 0.02 0.16
$by.total
total.time total.pct self.time self.pct
download.php?i=KjdkSVZq#17 8.04 64.11 8.04 64.11
<no location> 4.38 34.93 4.38 34.93
download.php?i=KjdkSVZq#16 0.06 0.48 0.06 0.48
download.php?i=KjdkSVZq#18 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#23 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#6 0.02 0.16 0.02 0.16
$by.line
self.time self.pct total.time total.pct
<no location> 4.38 34.93 4.38 34.93
download.php?i=KjdkSVZq#6 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#16 0.06 0.48 0.06 0.48
download.php?i=KjdkSVZq#17 8.04 64.11 8.04 64.11
download.php?i=KjdkSVZq#18 0.02 0.16 0.02 0.16
download.php?i=KjdkSVZq#23 0.02 0.16 0.02 0.16
$sample.interval
[1] 0.02
$sampling.time
[1] 12.54
Проверка исходного кода говорит нам, что проблемная строка (#17) действительно глупая if
Заявление в течение цикла. По сравнению с практически нет времени для расчета того же с использованием векторизованного кода (строка № 6).
Я не пробовал это с каким-либо графическим выводом, но я уже очень впечатлен тем, что я получил до сих пор.
Обновление: эта функция была переписана для работы с номерами строк. Это на GitHub здесь.
Я написал эту функцию для разбора файла из Rprof
и вывести таблицу с более четкими результатами, чем summaryRprof
, Он отображает полный стек функций (и номера строк, если line.profiling=TRUE
) и их относительный вклад во время выполнения:
proftable <- function(file, lines=10) {
# require(plyr)
interval <- as.numeric(strsplit(readLines(file, 1), "=")[[1L]][2L])/1e+06
profdata <- read.table(file, header=FALSE, sep=" ", comment.char = "",
colClasses="character", skip=1, fill=TRUE,
na.strings="")
filelines <- grep("#File", profdata[,1])
files <- aaply(as.matrix(profdata[filelines,]), 1, function(x) {
paste(na.omit(x), collapse = " ") })
profdata <- profdata[-filelines,]
total.time <- interval*nrow(profdata)
profdata <- as.matrix(profdata[,ncol(profdata):1])
profdata <- aaply(profdata, 1, function(x) {
c(x[(sum(is.na(x))+1):length(x)],
x[seq(from=1,by=1,length=sum(is.na(x)))])
})
stringtable <- table(apply(profdata, 1, paste, collapse=" "))
uniquerows <- strsplit(names(stringtable), " ")
uniquerows <- llply(uniquerows, function(x) replace(x, which(x=="NA"), NA))
dimnames(stringtable) <- NULL
stacktable <- ldply(uniquerows, function(x) x)
stringtable <- stringtable/sum(stringtable)*100
stacktable <- data.frame(PctTime=stringtable[], stacktable)
stacktable <- stacktable[order(stringtable, decreasing=TRUE),]
rownames(stacktable) <- NULL
stacktable <- head(stacktable, lines)
na.cols <- which(sapply(stacktable, function(x) all(is.na(x))))
stacktable <- stacktable[-na.cols]
parent.cols <- which(sapply(stacktable, function(x) length(unique(x)))==1)
parent.call <- paste0(paste(stacktable[1,parent.cols], collapse = " > ")," >")
stacktable <- stacktable[,-parent.cols]
calls <- aaply(as.matrix(stacktable[2:ncol(stacktable)]), 1, function(x) {
paste(na.omit(x), collapse= " > ")
})
stacktable <- data.frame(PctTime=stacktable$PctTime, Call=calls)
frac <- sum(stacktable$PctTime)
attr(stacktable, "total.time") <- total.time
attr(stacktable, "parent.call") <- parent.call
attr(stacktable, "files") <- files
attr(stacktable, "total.pct.time") <- frac
cat("\n")
print(stacktable, row.names=FALSE, right=FALSE, digits=3)
cat("\n")
cat(paste(files, collapse="\n"))
cat("\n")
cat(paste("\nParent Call:", parent.call))
cat(paste("\n\nTotal Time:", total.time, "seconds\n"))
cat(paste0("Percent of run time represented: ", format(frac, digits=3)), "%")
invisible(stacktable)
}
Запустив это на примере файла Henrik, я получаю это:
> Rprof("profile1.out", line.profiling=TRUE)
> source("http://pastebin.com/download.php?i=KjdkSVZq")
> Rprof(NULL)
> proftable("profile1.out", lines=10)
PctTime Call
20.47 1#17 > [ > 1#17 > [.data.frame
9.73 1#17 > [ > 1#17 > [.data.frame > [ > [.factor
8.72 1#17 > [ > 1#17 > [.data.frame > [ > [.factor > NextMethod
8.39 == > Ops.factor
5.37 ==
5.03 == > Ops.factor > noNA.levels > levels
4.70 == > Ops.factor > NextMethod
4.03 1#17 > [ > 1#17 > [.data.frame > [ > [.factor > levels
4.03 1#17 > [ > 1#17 > [.data.frame > dim
3.36 1#17 > [ > 1#17 > [.data.frame > length
#File 1: http://pastebin.com/download.php?i=KjdkSVZq
Parent Call: source > withVisible > eval > eval >
Total Time: 5.96 seconds
Percent of run time represented: 73.8 %
Обратите внимание, что "Родительский вызов" применяется ко всем стекам, представленным на столе. Это делает полезным, когда ваша IDE или любой другой вызывающий код оборачивает его в набор функций.
Другое решение исходит из другого вопроса: как эффективно использовать library(profr)
в R:
Например:
install.packages("profr")
devtools::install_github("alexwhitworth/imputation")
x <- matrix(rnorm(1000), 100)
x[x>1] <- NA
library(imputation)
library(profr)
a <- profr(kNN_impute(x, k=5, q=2), interval= 0.005)
Это не кажется (по крайней мере, мне), что графики здесь вообще полезны (например, plot(a)
). Но сама структура данных, кажется, предлагает решение:
R> head(a, 10)
level g_id t_id f start end n leaf time source
9 1 1 1 kNN_impute 0.005 0.190 1 FALSE 0.185 imputation
10 2 1 1 var_tests 0.005 0.010 1 FALSE 0.005 <NA>
11 2 2 1 apply 0.010 0.190 1 FALSE 0.180 base
12 3 1 1 var.test 0.005 0.010 1 FALSE 0.005 stats
13 3 2 1 FUN 0.010 0.110 1 FALSE 0.100 <NA>
14 3 2 2 FUN 0.115 0.190 1 FALSE 0.075 <NA>
15 4 1 1 var.test.default 0.005 0.010 1 FALSE 0.005 <NA>
16 4 2 1 sapply 0.010 0.040 1 FALSE 0.030 base
17 4 3 1 dist_q.matrix 0.040 0.045 1 FALSE 0.005 imputation
18 4 4 1 sapply 0.045 0.075 1 FALSE 0.030 base
Одно итерационное решение:
То есть структура данных предполагает использование tapply
суммировать данные. Это можно сделать довольно просто за один проход profr::profr
t <- tapply(a$time, paste(a$source, a$f, sep= "::"), sum)
t[order(t)] # time / function
R> round(t[order(t)] / sum(t), 4) # percentage of total time / function
base::! base::%in% base::| base::anyDuplicated
0.0015 0.0015 0.0015 0.0015
base::c base::deparse base::get base::match
0.0015 0.0015 0.0015 0.0015
base::mget base::min base::t methods::el
0.0015 0.0015 0.0015 0.0015
methods::getGeneric NA::.findMethodInTable NA::.getGeneric NA::.getGenericFromCache
0.0015 0.0015 0.0015 0.0015
NA::.getGenericFromCacheTable NA::.identC NA::.newSignature NA::.quickCoerceSelect
0.0015 0.0015 0.0015 0.0015
NA::.sigLabel NA::var.test.default NA::var_tests stats::var.test
0.0015 0.0015 0.0015 0.0015
base::paste methods::as<- NA::.findInheritedMethods NA::.getClassFromCache
0.0030 0.0030 0.0030 0.0030
NA::doTryCatch NA::tryCatchList NA::tryCatchOne base::crossprod
0.0030 0.0030 0.0030 0.0045
base::try base::tryCatch methods::getClassDef methods::possibleExtends
0.0045 0.0045 0.0045 0.0045
methods::loadMethod methods::is imputation::dist_q.matrix methods::validObject
0.0075 0.0090 0.0120 0.0136
NA::.findNextFromTable methods::addNextMethod NA::.nextMethod base::lapply
0.0166 0.0346 0.0361 0.0392
base::sapply imputation::impute_fn_knn methods::new imputation::kNN_impute
0.0392 0.0392 0.0437 0.0557
methods::callNextMethod kernlab::as.kernelMatrix base::apply kernlab::kernelMatrix
0.0572 0.0633 0.0663 0.0753
methods::initialize NA::FUN base::standardGeneric
0.0798 0.0994 0.1325
Из этого я вижу, что самые большие пользователи времени kernlab::kernelMatrix
и накладные расходы от R для классов S4 и дженериков.
Предпочтительно:
Я отмечаю, что, учитывая стохастический характер процесса выборки, я предпочитаю использовать средние значения, чтобы получить более надежную картину временного профиля:
prof_list <- replicate(100, profr(kNN_impute(x, k=5, q=2),
interval= 0.005), simplify = FALSE)
fun_timing <- vector("list", length= 100)
for (i in 1:100) {
fun_timing[[i]] <- tapply(prof_list[[i]]$time, paste(prof_list[[i]]$source, prof_list[[i]]$f, sep= "::"), sum)
}
# Here is where the stochastic nature of the profiler complicates things.
# Because of randomness, each replication may have slightly different
# functions called during profiling
sapply(fun_timing, function(x) {length(names(x))})
# we can also see some clearly odd replications (at least in my attempt)
> sapply(fun_timing, sum)
[1] 2.820 5.605 2.325 2.895 3.195 2.695 2.495 2.315 2.005 2.475 4.110 2.705 2.180 2.760
[15] 3130.240 3.435 7.675 7.155 5.205 3.760 7.335 7.545 8.155 8.175 6.965 5.820 8.760 7.345
[29] 9.815 7.965 6.370 4.900 5.720 4.530 6.220 3.345 4.055 3.170 3.725 7.780 7.090 7.670
[43] 5.400 7.635 7.125 6.905 6.545 6.855 7.185 7.610 2.965 3.865 3.875 3.480 7.770 7.055
[57] 8.870 8.940 10.130 9.730 5.205 5.645 3.045 2.535 2.675 2.695 2.730 2.555 2.675 2.270
[71] 9.515 4.700 7.270 2.950 6.630 8.370 9.070 7.950 3.250 4.405 3.475 6.420 2948.265 3.470
[85] 3.320 3.640 2.855 3.315 2.560 2.355 2.300 2.685 2.855 2.540 2.480 2.570 3.345 2.145
[99] 2.620 3.650
Удаление необычных копий и преобразование в data.frame
s:
fun_timing <- fun_timing[-c(15,83)]
fun_timing2 <- lapply(fun_timing, function(x) {
ret <- data.frame(fun= names(x), time= x)
dimnames(ret)[[1]] <- 1:nrow(ret)
return(ret)
})
Объединить репликации (почти наверняка может быть быстрее) и изучить результаты:
# function for merging DF's in a list
merge_recursive <- function(list, ...) {
n <- length(list)
df <- data.frame(list[[1]])
for (i in 2:n) {
df <- merge(df, list[[i]], ... = ...)
}
return(df)
}
# merge
fun_time <- merge_recursive(fun_timing2, by= "fun", all= FALSE)
# do some munging
fun_time2 <- data.frame(fun=fun_time[,1], avg_time=apply(fun_time[,-1], 1, mean, na.rm=T))
fun_time2$avg_pct <- fun_time2$avg_time / sum(fun_time2$avg_time)
fun_time2 <- fun_time2[order(fun_time2$avg_time, decreasing=TRUE),]
# examine results
R> head(fun_time2, 15)
fun avg_time avg_pct
4 base::standardGeneric 0.6760714 0.14745123
20 NA::FUN 0.4666327 0.10177262
12 methods::initialize 0.4488776 0.09790023
9 kernlab::kernelMatrix 0.3522449 0.07682464
8 kernlab::as.kernelMatrix 0.3215816 0.07013698
11 methods::callNextMethod 0.2986224 0.06512958
1 base::apply 0.2893367 0.06310437
7 imputation::kNN_impute 0.2433163 0.05306731
14 methods::new 0.2309184 0.05036331
10 methods::addNextMethod 0.2012245 0.04388708
3 base::sapply 0.1875000 0.04089377
2 base::lapply 0.1865306 0.04068234
6 imputation::impute_fn_knn 0.1827551 0.03985890
19 NA::.nextMethod 0.1790816 0.03905772
18 NA::.findNextFromTable 0.1003571 0.02188790
Результаты
Из результатов получается похожая, но более надежная картина, как в случае с одним случаем. А именно, есть много накладных расходов от R, а также что library(kernlab)
замедляет меня Примечательно, что с kernlab
реализован в S4, служебная нагрузка в R связана с тем, что классы S4 существенно медленнее, чем классы S3.
Я также хотел бы отметить, что мое личное мнение состоит в том, что очищенная версия этого может быть полезным пул- запросом в качестве сводного метода для profr. Хотя мне было бы интересно увидеть предложения других!
В настоящее время я удален R здесь, но в SPlus вы можете прервать выполнение с помощью клавиши Escape, а затем сделать traceback()
, который покажет вам стек вызовов. Это должно позволить вам использовать этот удобный метод.
Вот несколько причин, почему инструменты, основанные на тех же принципах, что и gprof, не очень хорошо решают проблемы с производительностью.