Метрополис Гастингс для модели линейной регрессии
Я пытаюсь реализовать алгоритм Метрополиса-Гастингса для простой линейной регрессии в C (без использования других библиотек (boost, Eigen и т. Д.) И без двумерных массивов)*. Для лучшего тестирования кода / оценки графиков трассировки я переписал код для R (см. Ниже), сохранив как можно больше C-кода.
К сожалению, цепи не сходятся. Мне интересно, если
- есть ошибка в самой реализации?
- "просто" плохой выбор предложений?
Предполагая последнее, я думаю о том, как найти хорошие параметры распределения предложений (в настоящее время я выбрал произвольные значения), чтобы алгоритм работал. Даже с тремя параметрами, как в этом случае, довольно трудно найти подходящие параметры. Как обычно справиться с этой проблемой, если, скажем, выборка Гиббса не является альтернативой?
* Я хочу использовать этот код для Cuda
#### posterior distribution
logPostDensity <- function(x, y, a, b, s2, N)
{
sumSqError = 0.0
for(i in 1:N)
{
sumSqError = sumSqError + (y[i] - (a + b*x[i]))^2
}
return(((-(N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x = x values
# y = actual datapoints
# N = sample size
# m = length of chain
# sigmaProp = uniform proposal for sigma squared
# paramAProp = uniform proposal for intercept
# paramBProp = uniform proposal for slope
mcmcSampling <- function(x,y,N,m,sigmaProp,paramAProp,paramBProp)
{
paramsA = vector("numeric",length=m) # intercept
paramsB = vector("numeric",length=m) # slope
s2 = vector("numeric",length=m) # sigma squared
paramsA[1] = 0
paramsB[1] = 0
s2[1] = 1
for(i in 2:m)
{
paramsA[i] = paramsA[i-1] + runif(1,-paramAProp,paramAProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsA[i] = paramsA[i-1]
}
paramsB[i] = paramsB[i-1] + runif(1,-paramBProp,paramBProp)
if((logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N)
- logPostDensity(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N))
< log(runif(1)))
{
paramsB[i] = paramsB[i-1]
}
s2[i] = s2[i-1] + runif(1,-sigmaProp,sigmaProp)
if((s2[i] < 0) || (logPostDensity(x,y,paramsA[i],paramsB[i],s2[i],N)
- logPostDensity(x,y,paramsA[i],paramsB[i],s2[i-1],N))
< log(runif(1)))
{
s2[i] = s2[i-1]
}
}
res = data.frame(paramsA,paramsB,s2)
return(res)
}
#########################################
set.seed(321)
x <- runif(100)
y <- 2 + 5*x + rnorm(100)
summary(lm(y~x))
df <- mcmcSampling(x,y,10,5000,0.05,0.05,0.05)
par(mfrow=c(3,1))
plot(df$paramsA[3000:5000],type="l",main="intercept")
plot(df$paramsB[3000:5000],type="l",main="slope")
plot(df$s2[3000:5000],type="l",main="sigma")
1 ответ
Была одна ошибка в секции перехвата (paramsA). Все остальное было в порядке. Я реализовал то, что предложил Алексей в своих комментариях. Вот решение:
pow <- function(x,y)
{
return(x^y)
}
#### posterior distribution
posteriorDistribution <- function(x, y, a, b,s2,N)
{
sumSqError <- 0.0
for(i in 1:N)
{
sumSqError <- sumSqError + pow(y[i] - (a + b*x[i]),2)
}
return((-((N/2)+1) * log(s2)) + ((-0.5/s2) * sumSqError))
}
# x <- x values
# y <- actual datapoints
# N <- sample size
# m <- length of chain
# sigmaProposalWidth <- width of uniform proposal dist for sigma squared
# paramAProposalWidth <- width of uniform proposal dist for intercept
# paramBProposalWidth <- width of uniform proposal dist for slope
mcmcSampling <- function(x,y,N,m,sigmaProposalWidth,paramAProposalWidth,paramBProposalWidth)
{
desiredAcc <- 0.44
paramsA <- vector("numeric",length=m) # intercept
paramsB <- vector("numeric",length=m) # slope
s2 <- vector("numeric",length=m) # sigma squared
paramsA[1] <- 0
paramsB[1] <- 0
s2[1] <- 1
accATot <- 0
accBTot <- 0
accS2Tot <- 0
for(i in 2:m)
{
paramsA[i] <- paramsA[i-1] + runif(1,-paramAProposalWidth,paramAProposalWidth)
accA <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i-1],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsA[i] <- paramsA[i-1]
accA <- 0
}
accATot <- accATot + accA
paramsB[i] <- paramsB[i-1] + runif(1,-paramBProposalWidth,paramBProposalWidth)
accB <- 1
if((posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N) -
posteriorDistribution(x,y,paramsA[i-1],paramsB[i-1],s2[i-1],N)) < log(runif(1)))
{
paramsB[i] <- paramsB[i-1]
accB <- 0
}
accBTot <- accBTot + accB
s2[i] <- s2[i-1] + runif(1,-sigmaProposalWidth,sigmaProposalWidth)
accS2 <- 1
if((s2[i] < 0) || (posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i],N) -
posteriorDistribution(x,y,paramsA[i],paramsB[i],s2[i-1],N)) < log(runif(1)))
{
s2[i] <- s2[i-1]
accS2 <- 0
}
accS2Tot <- accS2Tot + accS2
if(i%%100==0)
{
paramAProposalWidth <- paramAProposalWidth * ((accATot/100)/desiredAcc)
paramBProposalWidth <- paramBProposalWidth * ((accBTot/100)/desiredAcc)
sigmaProposalWidth <- sigmaProposalWidth * ((accS2Tot/100)/desiredAcc)
accATot <- 0
accBTot <- 0
accS2Tot <- 0
}
}
res <- data.frame(paramsA,paramsB,s2)
return(res)
}