Оценка максимального правдоподобия бета-нормы в R
Я хочу оценить параметры бета-нормального распределения. Я использовал пакет maxLik
library(VGAM)
library(maxLik)
alfa=2;beta=3;mu=0;sigma=1
n=100
x=rbetanorm(n,alfa,beta,mu,sigma)
logLikFun=function(w){
alfa=w[1]
beta=w[2]
mu=w[3]
sigma=w[4]
ll={-n*log(beta(alfa,beta))+(alfa-1)*sum(log(pnorm((x-mu)/sigma,mean=0,sd=1)))+(beta-1)*sum(log(1-pnorm((x-mu)/sigma,mean=0,sd=1)))-n*log(sigma)+sum(log(dnorm((x-mu)/sigma,mean=0,sd=1)))}
ll
}
mle=maxLik(logLikFun,start=c(alfa=3,beta=2,mu=1,sigma=2))
summary(mle)
но это дает ошибку
----------------------------------
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -86.16515
4 free parameters
Estimates:
Estimate Std. error t value Pr(> t)
alfa 3.000 Inf 0 1
beta 2.941 Inf 0 1
mu 1.000 Inf 0 1
sigma 2.000 Inf 0 1
--------------------------------------------
проблема заключается в бесконечном значении ошибок, что недопустимо. Я был бы рад, если бы кто-то мог решить эту проблему.
1 ответ
Результаты чрезвычайно зависят от начальных значений. Кроме того, вы можете установить некоторые начальные значения как фиксированные значения.
Для получения дополнительной информации относительно теоретических вопросов, стоящих за кодом, обратитесь к этой ссылке.
library(VGAM)
library(maxLik)
alfa=1;beta=1;mu=0;sigma=1
n=100
x<-rbetanorm(n,alfa,beta,mu,sigma)
logLikFun<-function(w){
alfa<-w[1]
beta<-w[2]
mu<-w[3]
sigma<-w[4]
ll<-{-n*log(beta(alfa,beta))+(alfa-1)*sum(log(pnorm((x-mu)/sigma,mean=0,sd=1)))+(beta-1)*sum(log(1-pnorm((x-mu)/sigma,mean=0,sd=1)))-n*log(sigma)+sum(log(dnorm((x-mu)/sigma,mean=0,sd=1)))}
ll
}
mle<-maxLik(logLikFun,grad=NULL,hess=NULL,start=c(alfa=1,beta=1,mu=mean(x),sigma=1),"NR")
summary(mle)
OUTPUT:
--------------------------------------------
Maximum Likelihood estimation
Newton-Raphson maximisation, 10 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -139.6822
3 free parameters
Estimates:
Estimate Std. error t value Pr(> t)
alfa 0.4026 0.1190 3.384 0.000714 ***
beta 4.3981 2.9560 1.488 0.136794
mu 2.0340 0.6135 3.315 0.000915 ***
sigma 1.0000 0.0000 NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
--------------------------------------------