Как указать пользовательские панели ошибок в catblot Seaborn?

Я пытаюсь визуализировать некоторые данные, используя пакет Seaborn в Python. В частности, я хотел бы использовать catplot(kind='bar') функция (ранее названная как factorplot()). Мой DataFrame выглядит так (столбцы 'x', 'col', 'row' а также 'hue' категоричны):

   x  y        dy col row hue
0  4  9  0.766591   1   0   2
1  5  9  0.688683   0   1   0
2  0  7  0.707982   0   0   1
3  3  6  0.767210   2   1   0
4  3  8  0.287153   0   1   0

Я хотел бы использовать столбец неопределенности 'dy' представлять погрешности 'y', По умолчанию начальные загрузки или стандартные ошибки отклонения, выполняемые сателлитами Seaborn, не дают мне удовлетворительного решения.

Здесь я приведу пример минимальной полной проверки:

import pandas as pd
import numpy.random as npr
import seaborn as sns

npr.seed(seed=0)
my_sz = 1000

df_x = pd.DataFrame(npr.randint(0,7,size=(my_sz, 1)), columns=['x'])
df_y = pd.DataFrame(npr.randint(5,10,size=(my_sz, 1)), columns=['y'])
df_dy = pd.DataFrame(npr.random(size=(my_sz, 1)), columns=['dy'])
df_col = pd.DataFrame(npr.randint(0,3,size=(my_sz, 1)), columns=['col'])
df_row = pd.DataFrame(npr.randint(0,2,size=(my_sz, 1)), columns=['row'])
df_hue = pd.DataFrame(npr.randint(0,3,size=(my_sz, 1)), columns=['hue'])

df = pd.concat([df_x, df_y, df_dy, df_col, df_row, df_hue], axis=1)

df[['x', 'col', 'row', 'hue']] =df[['x', 'col', 'row', 'hue']].astype('category')

cat_plt = sns.catplot(x='x',
                      y='y',
                      hue='hue',
                      data=df,
                      row='row',
                      col='col',
                      kind='bar',
                     );

Seaborn категорический гистограмма с ошибками по умолчанию

Я попробовал следующее решение, но я думаю, что оно не работает с многобарочными графиками.

Заранее спасибо за ваше время и вашу помощь.

1 ответ

Вы можете сделать это следующим образом:

      import pandas as pd
import numpy.random as npr
import seaborn as sns
import matplotlib.pyplot as plt

def errplot(x, y, yerr, hue, **kwargs):
    data = kwargs.pop('data')
    p = data.pivot_table(index=x, columns=hue, values=y, aggfunc='mean')
    err = data.pivot_table(index=x, columns=hue, values=yerr, aggfunc='mean')
    p.plot(kind='bar', yerr=err, ax=plt.gca(), **kwargs)

sns.set_theme()
npr.seed(seed=0)
my_sz = 1000

df_x = pd.DataFrame(npr.randint(0, 7, size=(my_sz, 1)), columns=['x'])
df_y = pd.DataFrame(npr.randint(5, 10, size=(my_sz, 1)), columns=['y'])
df_dy = pd.DataFrame(npr.random(size=(my_sz, 1)), columns=['dy'])
df_col = pd.DataFrame(npr.randint(0, 3, size=(my_sz, 1)), columns=['col'])
df_row = pd.DataFrame(npr.randint(0, 2, size=(my_sz, 1)), columns=['row'])
df_hue = pd.DataFrame(npr.randint(0, 3, size=(my_sz, 1)), columns=['hue'])

df = pd.concat([df_x, df_y, df_dy, df_col, df_row, df_hue], axis=1)
df[['x', 'col', 'row', 'hue']] = df[['x', 'col', 'row', 'hue']].astype('category')

g = sns.FacetGrid(df, row='row', col='col')
g.map_dataframe(errplot, "x", "y", "dy", "hue", color=['blue', 'orange', 'green'], width=0.8)

plt.subplots_adjust(right=0.90)
plt.legend(loc='center left', bbox_to_anchor=(1,1))

plt.show()

Адаптировано из этого ответа .

Выход:

Другие вопросы по тегам