Взвешенная дисперсия и взвешенное стандартное отклонение в C++

Привет, я пытаюсь вычислить взвешенную дисперсию и взвешенное стандартное отклонение для ряда целых чисел или чисел с плавающей запятой. Я нашел эти ссылки:

http://math.tutorvista.com/statistics/standard-deviation.html

http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf (предупреждение pdf)

Вот мои функции шаблона до сих пор. Дисперсия и стандартное отклонение работают нормально, но для жизни я не могу получить взвешенные версии, чтобы соответствовать тестовому случаю внизу pdf:

template <class T>
inline float    Mean( T samples[], int count )
{
    float   mean = 0.0f;

    if( count >= 1 )
    {
        for( int i = 0; i < count; i++ )
            mean += samples[i];

        mean /= (float) count;
    }

    return mean;
}

template <class T>
inline float    Variance( T samples[], int count )
{
    float   variance = 0.0f;

    if( count > 1 )
    {
        float   mean = 0.0f;

        for( int i = 0; i < count; i++ )
            mean += samples[i];

        mean /= (float) count;

        for( int i = 0; i < count; i++ )
        {
            float   sum = (float) samples[i] - mean;

            variance += sum*sum;
        }

        variance /= (float) count - 1.0f;
    }

    return variance;
}

template <class T>
inline float    StdDev( T samples[], int count )
{
    return sqrtf( Variance( samples, count ) );
}

template <class T>
inline float    VarianceWeighted( T samples[], T weights[], int count )
{
    float   varianceWeighted = 0.0f;

    if( count > 1 )
    {
        float   sumWeights = 0.0f, meanWeighted = 0.0f;
        int     numNonzero = 0;

        for( int i = 0; i < count; i++ )
        {
            meanWeighted += samples[i]*weights[i];
            sumWeights += weights[i];

            if( ((float) weights[i]) != 0.0f ) numNonzero++;
        }

        if( sumWeights != 0.0f && numNonzero > 1 )
        {
            meanWeighted /= sumWeights;

            for( int i = 0; i < count; i++ )
            {
                float   sum = samples[i] - meanWeighted;

                varianceWeighted += weights[i]*sum*sum;
            }

            varianceWeighted *= ((float) numNonzero)/((float) count*(numNonzero - 1.0f)*sumWeights);    // this should be right but isn't?!
        }
    }

    return varianceWeighted;
}

template <class T>
inline float    StdDevWeighted( T samples[], T weights[], int count )
{
    return sqrtf( VarianceWeighted( samples, weights, count ) );
}

Прецедент:

int     samples[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };

printf( "%.2f\n", StdDev( samples, 9 ) );

int     weights[] = { 1, 1, 0, 0, 4, 1, 2, 1, 0 };

printf( "%.2f\n", StdDevWeighted( samples, weights, 9 ) );

Результат:

7.46
1.94

Должно быть:

7.46
5.82

Я думаю, что проблема в том, что взвешенная дисперсия имеет несколько разных интерпретаций, и я не знаю, какая из них является стандартной. Я нашел этот вариант:

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

template <class T>
inline float    VarianceWeighted( T samples[], T weights[], int count )
{
    float   varianceWeighted = 0.0f;

    if( count > 1 )
    {
        float   sumWeights = 0.0f, meanWeighted = 0.0f, m2 = 0.0f;

        for( int i = 0; i < count; i++ )
        {
            float   temp = weights[i] + sumWeights,
                    delta = samples[i] - meanWeighted,
                    r = delta*weights[i]/temp;

            meanWeighted += r;
            m2 += sumWeights*delta*r;   // Alternatively, m2 += weights[i] * delta * (samples[i]−meanWeighted)
            sumWeights = temp;
        }

        varianceWeighted = (m2/sumWeights)*((float) count/(count - 1));
    }

    return varianceWeighted;
}

Результат:

7.46
5.64

Я также попытался посмотреть на boost и esutil, но они не сильно помогли:

http://www.boost.org/doc/libs/1_48_0/boost/accumulators/statistics/weighted_variance.hpp http://esutil.googlecode.com/svn-history/r269/trunk/esutil/stat/util.py

Мне не нужна вся библиотека статистики, и что более важно, я хочу понять реализацию.

Может кто-нибудь, пожалуйста, опубликовать функции для правильного расчета?

Бонусные баллы, если ваши функции могут сделать это за один проход.

Кроме того, кто-нибудь знает, дает ли взвешенная дисперсия тот же результат, что и обычная дисперсия с повторяющимися значениями? Например, будет ли дисперсия выборок [] = { 1, 2, 3, 3 } такой же, как и взвешенная дисперсия выборок [] = { 1, 2, 3 }, веса [] = { 1, 1, 2 }?

Обновление: вот таблица Google Docs, которую я настроил для изучения проблемы. К сожалению, мои ответы нигде не близки к NIST pdf. Я думаю, что проблема находится в шаге непредвзятости, но я не вижу, как это исправить.

https://docs.google.com/spreadsheet/ccc?key=0ApzPh5nRin0ldGNNYjhCUTlWTks2TGJrZW4wQUcyZnc&usp=sharing

Результатом является взвешенная дисперсия 3,77, которая является квадратом взвешенного стандартного отклонения 1,94, которое я получил в своем коде C++.

Я пытаюсь установить октаву в моей настройке Mac OS X, чтобы я мог запустить их функцию var() с весами, но для ее установки с brew требуется вечность. Я глубоко в бритье яка сейчас.

2 ответа

float mean(uint16_t* x, uint16_t n) {
    uint16_t sum_xi = 0;
    int i;
    for (i = 0; i < n; i++) {
        sum_xi += x[i];
    }
    return (float) sum_xi / n;
}

/**
 * http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weigmean.pdf
 */
float weighted_mean(uint16_t* x, uint16_t* w, uint16_t n) {
    int sum_wixi = 0;
    int sum_wi = 0;
    int i;
    for (i = 0; i < n; i++) {
        sum_wixi += w[i] * x[i];
        sum_wi += w[i];
    }
    return (float) sum_wixi / (float) sum_wi;
}

float variance(uint16_t* x, uint16_t n) {
    float mean_x = mean(x, n);
    float dist, dist2;
    float sum_dist2 = 0;

    int i;
    for (i = 0; i < n; i++) {
        dist = x[i] - mean_x;
        dist2 = dist * dist;
        sum_dist2 += dist2;
    }

    return sum_dist2 / (n - 1);
}

/**
 * http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weighvar.pdf
 */
float weighted_variance(uint16_t* x, uint16_t* w, uint16_t n) {
    float xw = weighted_mean(x, w, n);
    float dist, dist2;
    float sum_wi_times_dist2 = 0;
    int sum_wi = 0;
    int n_prime = 0;

    int i;
    for (i = 0; i < n; i++) {
        dist = x[i] - xw;
        dist2 = dist * dist;
        sum_wi_times_dist2 += w[i] * dist2;
        sum_wi += w[i];

        if (w[i] > 0)
            n_prime++;
    }

    if (n_prime > 1) {
        return sum_wi_times_dist2 / ((float) ((n_prime - 1) * sum_wi) / n_prime);
    } else {
        return 0.0f;
    }
}

/**
 * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm
 */
float weighted_incremental_variance(uint16_t* x, uint16_t* w, uint16_t n) {
    uint16_t sumweight = 0;
    float mean = 0;
    float M2 = 0;
    int n_prime = 0;

    uint16_t temp;
    float delta;
    float R;

    int i;
    for (i = 0; i < n; i++) {
        if (w[i] == 0)
            continue;

        temp = w[i] + sumweight;
        delta = x[i] - mean;
        R = delta * w[i] / temp;
        mean += R;
        M2 += sumweight * delta * R;
        sumweight = temp;

        n_prime++;
    }

    if (n_prime > 1) {
        float variance_n = M2 / sumweight;
        return variance_n * n_prime / (n_prime - 1);
    } else {
        return 0.0f;
    }
}

void main(void) {
    uint16_t n = 9;
    uint16_t x[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
    uint16_t w[] = { 1, 1, 0, 0,  4,  1,  2,  1,  0 };

    printf("%f\n", weighted_variance(x, w, n)); /* outputs: 33.900002 */
    printf("%f\n", weighted_incremental_variance(x, w, n)); /* outputs: 33.900005 */
}

Решение

Вы случайно добавили дополнительный термин "количество" в знаменатель условия обновления дисперсии.

При использовании приведенного ниже исправления я получаю ваш ожидаемый ответ

5.82

К вашему сведению, один из способов понять подобные вещи, когда вы выполняете анализ кода, - это выполнить "анализ измерений". "Единицы" уравнения были неправильными. Вы фактически делили на квадрат порядка N, когда это должен быть порядок N.

До

template <class T>
inline float    VarianceWeighted( T samples[], T weights[], int count )
{
    ...
            varianceWeighted *= ((float) numNonzero)/((float) count*(numNonzero - 1.0f)*sumWeights);    // this should be right but isn't?!
    ...
}

После

При удалении "считать" эту строку следует заменить на

template <class T>
inline float    VarianceWeighted( T samples[], T weights[], int count )
{
    ...
            varianceWeighted *= ((float) numNonzero)/((float) (numNonzero - 1.0f)*sumWeights);  // removed count term
    ...
}

Вот гораздо более короткая версия с работающей демоверсией:

 #include <iostream>
 #include <vector>
 #include <boost/accumulators/accumulators.hpp>
 #include <boost/accumulators/statistics/stats.hpp>
 #include <boost/accumulators/statistics/weighted_variance.hpp>
 #include <boost/accumulators/statistics/variance.hpp>

 namespace ba = boost::accumulators;

 int main() {
     std::vector<double> numbers{2, 3, 5, 7, 11, 13, 17, 19, 23};
     std::vector<double> weights{1, 1, 0, 0,  4,  1,  2,  1, 0 };

     ba::accumulator_set<double, ba::stats<ba::tag::variance          >          > acc;
     ba::accumulator_set<double, ba::stats<ba::tag::weighted_variance > , double > acc_weighted;

     double n = numbers.size();
     double N = n;

     for(size_t i = 0 ; i<numbers.size() ; i++ ) {
         acc         ( numbers[i] );
         acc_weighted( numbers[i] ,   ba::weight = weights[i] );
         if(weights[i] == 0) {
             n=n-1;
         }
     };

     std::cout << "Sample Standard Deviation, s: "          << std::sqrt(ba::variance(acc)                  *N/(N-1))        << std::endl;
     std::cout << "Weighted Sample Standard Deviation, s: " << std::sqrt(ba::weighted_variance(acc_weighted)*n/(n-1))        << std::endl;
 }

Обратите внимание, что n должен отражать количество образцов с ненулевыми весами, следовательно, дополнительные n=n-1; линия.

Sample Standard Deviation, s: 7.45729
Weighted Sample Standard Deviation, s: 5.82237
Другие вопросы по тегам