Выбор колеса рулетки, поиск кармана без сортировки

В настоящее время я пытаюсь реализовать выбор колеса Java-рулетки (см. http://en.wikipedia.org/wiki/Fitness_proportionate_selection).

Моя проблема возникает после нахождения относительной пригодности для каждого отдельного моего населения.

Например, скажем, я создаю пробалистическую рулетку, такую ​​как:

индивидуум а: 0 - 0,3 индивидуум б: 0,3 - 0,5 индивидуум с: 0,5 - 1

Принимая во внимание, что индивидуальный a имеет 30% выбора при выборе, b имеет 20%, а c имеет 50% выбора, если я вращаю эту рулетку.

Моя проблема в том, что в статье в Википедии упоминается "Заметьте, что прирост производительности может быть достигнут с помощью бинарного поиска, а не линейного поиска, чтобы найти правильный карман". подразумевая, что после генерации моего случайного числа я должен выполнить линейный или двоичный поиск моих карманов, чтобы найти, какой из них был выбран.

Дело в том, что с точки зрения производительности этот бинарный поиск для нахождения правого кармана на каждом ходу кажется ненужным, не было бы возможно просто иметь какой-то HashMap, тогда как каждая запись в таблице связана с диапазоном, как показано выше и вытягивание с использованием ключа в пределах этого диапазона вытянет ассоциированного человека за линейное время вместо того, чтобы требовать двоичного поиска.

Я посмотрел на древовидную карту, но древовидная карта должна изначально сортировать карманы, что не годится, не сортируется.

3 ответа

С n=1000 особей и выбрав k=100 из них, вы можете сделать

  • 100 бинарных поисков, O(k logn)
  • или 1.000 помещает в Tree, HashMap или какую-то другую структуру данных, O(n+k)

Только тестирование покажет, что быстрее, производительность зависит от n, k и реализаций.

HashMap позволяет находить элементы только по точному значению ключа. Ваш алгоритм требует найти значение по диапазону. Таким образом, использование бинарного поиска или TreeMap даст вам сложность O(log(n)). Я не думаю, что возможно иметь лучшую сложность.

И я не понимаю, о чем ты говоришь. Похоже, вы говорите, что линейный поиск имеет лучшую производительность, чем TreeMap или бинарный поиск. Это не правильно.

Ну, может быть, этот код выбора колеса рулетки в java может дать вам понять, что вы можете получить все, что вы можете получить здесь, класс Chromosome

import java.util.*; // Random, Arrays, Vector, List
import java.io.*;   // BufferedWriter, FileWriter


/**
 * <code>Evolution</code> implements the genetic algorithm.
 *
 * This is an executable class that uses the <code>Chromosome<code>
 * class to implement the genetic algorithm.  It can be run with the
 * following command line calls:
 * <UL>
 * <LI>java Evolution ones population_size chromosome_size generations crossover_rate mutation_rate logfile
 * <LI>java Evolution binary population_size chromosome_size generations crossover_rate mutation_rate logfile binary_number
 * </UL>
 * <P>
 * Where the parameters are:
 * <UL>
 * <LI><B>ones</B>: use the number of ones in the gene sequence as the
 * fitness function
 * <LI><B>binary</B>: measure the closeness of the gene sequence to a binary
 * number for the fitness function
 * <LI><B>chromosome_size</B>: an int number of genes in each chromosome
 * <LI><B>generations</B>: an int number of generations to produce
 * <LI><B>crossover_rate</B>: a double gene crossover rate between 0 and 1
 * <LI><B>mutation_rate</B>: a double gene mutation rate between 0 and 1
 * <LI><B>logfile</B>: a String name for the log file
 * <LI><B>binary_number</B>: an int to be used as the binary number for
 * the binary number fitness function
 * </UL>
 * <P>
 * Some example command line calls:
 * <UL>
 * <LI>java Evolution ones 100 20 100 0.7 0.001 ones.log
 * <LI>java Evolution binary 100 20 100 0.7 0.001 binary.log 3755865
 * </UL>
 * <P>
 * This class implements a "roulette wheel" selection method, based on each
 * chromosome's fitness value.  The genetic operators are single-point
 * crossover and point-mutation.  To boost the selectiveness of each
 * generation, the <code>threshold</code> value in the <code>selection</code>
 * method can be set to an arbitrary fitness value, or to the average
 * fitness value, etc.
 * <P>
     */
public class Evolution
    {


    /**
     * holds the best fitness value of a population for a particular
     * generation
     */
    private int best_fit = 0;


    /**
     * holds the sum of the fitness values of the population for a particular
     * generation
     */
    private int total_fit = 0;


    /**
     * holds the population
     */
    private Vector population = null;


    /**
     * holds the "roulette odds" for each individual in a generation.  Each
     * index corresponds to an individual in the population, and each value
     * represents the sum of the fitness values for that individual and all
     * the prior ones in the population.  The "roulette wheel" algorithm is
     * performed by choosing a random number between zero and
     * <code>total_fit</code> (inclusive).  This number is then searched for
     * in the <code>roulette</code> array.  The index which contains the
     * random number or the next higher number is the individual chosen for
     * that "spin of the roulette wheel."
     *
     * @see #selection(double)
     */
    private int roulette[] = null;


    /**
     * holds onto a <code>Random</code> object
     *
     * @see java.util.Random
     */
    private Random rand = null;


    /**
     * a double between 0 and 1 (inclusive) that represents the rate at which
     * crossover occurs in selected individuals
     */
    private double crossover_rate = 0;


    /**
     * a double between 0 and 1 (inclusive) that represents the rate at which
     * mutation occurs in selected individuals
     */
    private double mutation_rate  = 0;



    /**
     * Constructor for <code>Evolution</code> that use the total number of
     * ones in a <code>Chromosome</code>'s gene sequence as its fitness
     * function.
     *
     * @param pop_size   a positive <code>int</code> number of
     *                   chromosomes in the population for each generation
     * @param chrom_size a positive <code>int</code> number of genes in each
     *                   <code>Chromosome</code> object's gene sequence
     * @param pc         the crossover rate; this should be a
     *                   <code>double</code> value between zero and one
     *                   (inclusive)
     * @param pc         the mutation rate; this should be a
     *                   <code>double</code> value between zero and one
     *                   (inclusive)
     *
     * @see #crossover_rate
     * @see #mutation_rate
     * @see Chromosome#Chromosome(int, java.util.Random)
     */
    public Evolution(int pop_size, int chrom_size, double pc, double pm)
        {
        Chromosome c   = null;
        total_fit      = 0;
        best_fit       = 0;
        crossover_rate = pc;
        mutation_rate  = pm;

        // make population and roulette mapping
        population = new Vector(pop_size);
        roulette   = new int[pop_size];

        // seed the random number generator
        rand = new Random(System.currentTimeMillis());

        // make population
        for (int i = 0; i < pop_size; i++)
            {
            c = new Chromosome(chrom_size, rand);

            // update fitness information
            total_fit = total_fit + c.get_fit();
            best_fit = Math.max(best_fit, c.get_fit());

            // add chromosome to population and roulette wheel
            population.add(c);
            roulette[i] = total_fit;
            }
        }



    /**
     * Constructor for <code>Evolution</code> that use the proximity of
     * a <code>Chromosome</code>'s gene sequence to a <code>target</code>
     * sequence as the fitness function.
     *
     * The <code>Chromosome</code>s made in this <code>Evolution</code> have
     * gene sequences equal to <code>target.length</code>.  The fitness
     * function walks through the indexes of <code>target</code> and the
     * given chromosome's gene sequence, and adds one to that chromosome's
     * fitness for each gene that has the same value as <code>target</code>.
     *
     * @param pop_size   a positive <code>int</code> number of
     *                   chromosomes in the population for each generation
     * @param target     a <code>boolean</code> array whose length will be
     *                   used as the length for all <code>Chromosome</code>s
     *                   made by this <code>Evolution</code>; this parameter's
     *                   value will be used by the <code>Chromosome</code>s'
     *                   fitness functions
     * @param pc         the crossover rate; this should be a
     *                   <code>double</code> value between zero and one
     *                   (inclusive)
     * @param pc         the mutation rate; this should be a
     *                   <code>double</code> value between zero and one
     *                   (inclusive)
     *
     * @see #crossover_rate
     * @see #mutation_rate
     * @see Chromosome#Chromosome(boolean[], java.util.Random)
     */
    public Evolution(int pop_size, boolean[] target, double pc, double pm)
        {
        Chromosome c   = null;
        total_fit      = 0;
        best_fit       = 0;
        crossover_rate = pc;
        mutation_rate  = pm;

        // make population
        population = new Vector(pop_size);
        roulette   = new int[pop_size];

        // seed the random number generator
        rand = new Random(System.currentTimeMillis());

        // make population
        for (int i = 0; i < pop_size; i++)
            {
            c = new Chromosome(target, rand);

            // update fitness information
            total_fit = total_fit + c.get_fit();
            best_fit = Math.max(best_fit, c.get_fit());

            // add chromosome to population and roulette wheel
            population.add(c);
            roulette[i] = total_fit;
            }
        }



    /**
     * Probablistically selects <code>Chromosome</code>s from this
     * <code>Evolution</code>'s <code>population</code> using the
     * code "roulette wheel" algorithm.
     *
     * This method returns a new <code>List</code> of individuals from the
     * previous population who have been probabalistically selected based
     * on their fitness.  To do this, this method randomly picks a value
     * between zero and <code>total_fit</code> (inclusive).  It then
     * searches for this value in <code>roulette</code>, which is an
     * <code>int</code> array the same length as the number of individuals
     * in <code>population</code>.  Each index in <code>roulette</code>
     * corresponds to an individual in the population, and each value in
     * the array is the sum of the the fitness values of all the
     * individuals before it, plus the fitness value of the current
     * individual.  A search is done on <code>roulette</code> for the
     * randomly generated number.  If the number is equal to or less than a
     * value in the array, but greater than the value in the previous index,
     * that index is selected, and the individual that corresponds to that
     * index is added to the selected population.
     * <P>
     * Often, this function is not "selective" enough.  For that reason, one
     * can set the <code>threshold</code> parameter.  No individual with a
     * fitness function less than the threshold will be added to the new
     * population.  For the simple roulette behavior described above, the
     * <code>threshold</code> should be set to zero. Else, it could be
     * set to the average fitness, or any other arbitrary value.  If it is
     * set higher than the fitness of the most fit individual in this
     * population, the method will enter an infinite loop.
     *
     * @param threshold  a <code>double</code> fitness value; individuals
     *                   fitness values below this value are guaranteed not
     *                   to added to the <code>List</code> of selected
     *                   individuals.  This value must be less than or equal
     *                   to the fitness of the most fit individual in the
     *                   population, or this method will enter an infinite
     *                   loop.
     *
     * @return           a <code>List</code> of length equal to the size of
     *                   the current <code>population</code> composed of
     *                   individuals probabalistically selected from the
     *                   current <code>population</code>
     */
    public List selection(double threshold)
        {
        int        index        = 0;
        int        random_int   = 0;
        int        size         = population.size();
        Vector     selected_pop = new Vector(size);
        Chromosome selected     = null;

        // make population
        for (int i = 0; i < size; i++)
            {

            // roulette wheel selection
            random_int = rand.nextInt(total_fit + 1);
            index = Arrays.binarySearch(roulette, random_int);
            if (index < 0)
                {
                index = Math.abs(index + 1);
                }

            // get selected chromosome
            selected = (Chromosome)(population.get(index));

            // ignore if chromosome doesn't meet fitness threshold
            if (selected.get_fit() < threshold)
                {
                i--;
                }

            // else add chromosome to new selected population
            else
                {
                selected_pop.add(selected.getCopy());
                }
            }

        return selected_pop;
        }



    /**
     * Accepts a <code>List</code> of <code>Chromosomes</code>, performs
     * crossover and mutation operations on them with some probability,
     * recomputes each <code>Chromosome</code>'s fitness value,
     * recomputes the <code>total_fit</code>, <code>best_fit</code>, and
     * </code>roulette</code>, and then sets the <code>population</code>
     * to this <code>List</code> of new <code>Chromosome</code>.
     *
     * This method performs two basic functions: crossover and mutation.
     * It first clears <code>total_fit</code> and <code>best_fit</code>.
     * In the crossover step, the first and second <code>Chromosome</code>
     * are selected for crossover, the third and fourth, etc.  If there is
     * an odd number in the list, the last <code>Chromosome</code> is not
     * crossed.  Crossover occurs only with the probability given by the
     * <code>crossover_rate</code>.  This method assumes that the
     * elements in the input <code>List</code> were already selected
     * randomly, and thus makes no effort to randomly select individuals
     * from the input <code>List</code> for crossover.
     * <P>
     * Mutation occurs after crossover.  Each element is examined and
     * has a chance of being point-mutated with a probability given by
     * the <code>mutation_rate</code>.  After the<code>Chromosome</code>
     * is or is not mutated, its fitness is recomputed and
     * <code>total_fit</code>, <code>best_fit</code> and
     * <code>roulette</code> are updated accordingly.
     * <P>
     * After the mutation step, the <code>population</code> is given the
     * value of the <code>List</code> of mutated and crossed
     * <code>Chromosome</code>s.
     *
     * @param threshold  a <code>List</code> of <code>Chromosome</code>s to
     *                   be crossed and mutated
     *
     * @see #crossover_rate
     * @see #mutation_rate
     * @see Chromosome#crossover(Chromosome, Chromosome, java.util.Random)
     * @see Chromosome#mutate(Chromosome, java.util.Random)
     */
    public void reproduction(List selected_pop)
        {
        int    size         = selected_pop.size();
        int    half_size    = ((size + 1) / 2);
        Chromosome parent1 = null;
        Chromosome parent2 = null;

        // reset fitness statistics
        best_fit = 0;
        total_fit = 0;

        // crossover
        for (int i = 1; i < half_size; i++)
            {
            if (rand.nextDouble() <= crossover_rate)
                {
                parent1 = (Chromosome)(selected_pop.get(i * 2));
                parent2 = (Chromosome)(selected_pop.get((i * 2) - 1));
                Chromosome.crossover(parent1, parent2, rand);
                }
            }

        // mutation, and update fitness and roulette
        for (int i = 0; i < size; i++)
            {
            parent1 = (Chromosome)(selected_pop.get(i));
            if (rand.nextDouble() <= mutation_rate)
                {
                Chromosome.mutate(parent1, rand);
                }

            // update fitness information
            total_fit = total_fit + parent1.get_fit();
            best_fit = Math.max(best_fit, parent1.get_fit());

            // update roulette
            roulette[i] = total_fit;
            }

        // set the population to this new population
        population = new Vector(selected_pop);
        }



    /**
     * Creates a binary representation <code>boolean</code> array of
     * an input <code>int</code>.
     *
     * This method makes a <code>boolean</code> array of a length
     * specified by the <code>length</code> parameter, with the binary
     * representation of the <code>number</code> parameter, where
     * <code>true</code> represents one, and <code>false</code>
     * represents zero.  The least signifiant bits are at the start of
     * the array, and if the number ends before the end of the array,
     * subsequent bits are zero.  If the length of the array is less
     * than the number of bits needed to represent the input digit,
     * the most significant bits past the length of the array are
     * truncated.
     *
     * @param number   an <code>int</code> to be encoded into binary
     * @param length   the length of the binary array
     *
     * @return         a <code>boolean</code> array representation of
     *                 the <code>number</code> parameter in binary
     */
    public static boolean[] toBinary(int number, int length)
        {
        boolean result[] = new boolean[length];


        for (int i = (length - 1); i >= 0; i--)
            {
            if ((number % 2) == 1)
                {
                result[i] = true;
                }
            else
                {
                result[i] = false;
                }
            number = (number / 2);
            }

        return result;
        }



    /**
     * Evolves this evolution object through the given number of generations,
     * printing the results of each generation to stdout and to a log file.
     *
     * This method is basically a glorified loop, with a lot of string
     * manipulation for the print statements.  Note that you can set the
     * threshold parameter for the <code>selection</code> method in this
     * method.  It will loop and print out the results for the number of
     * generations specifed by the parameter <code>generations</code>.
     *
     * @param generations an <code>int</code> number of generations to
     *                    print results for
     * @param log         a <code>BufferedWriter</code> attached to a
     *                    log file, for writing results to a log
     *
     * @throws IOException thrown if there is an error writing to 
     *                     the log file
     *
     * @see java.io.BufferedWriter
     * @see #selection(double)
     * @see #reproduction(java.util.List)
     */
    public void evolve(int generations, BufferedWriter log) throws IOException
        {
        StringBuffer buffer    = null;
        double       average   = 0;
        double       threshold = 0;

        // print header info to screen and file
        buffer = new StringBuffer();
        buffer.append("Generations: ");
        buffer.append(generations);
        buffer.append("\tPopulation Size: ");
        buffer.append(population.size());
        buffer.append("\tCrossover Rate: ");
        buffer.append(crossover_rate);
        buffer.append("\tMutation Rate: ");
        buffer.append(mutation_rate);
        System.out.println(buffer.toString());
        log.write(buffer.toString() + "\n");

        // make new generations
        for (int i = 0; i <= generations; i++)
            {
            average = total_fit / (double)(population.size());

            // print to screen
            buffer = new StringBuffer();
            buffer.append("Generation: ");
            buffer.append(i);
            buffer.append("\tBest Fitness: ");
            buffer.append(best_fit);
            buffer.append("\tAverage Fitness: ");
            buffer.append(average);
            System.out.println(buffer.toString());

            // log to file
            buffer = new StringBuffer();
            buffer.append(i);
            buffer.append("\t");
            buffer.append(best_fit);
            buffer.append("\t");
            buffer.append(average);
            buffer.append("\n");
            log.write(buffer.toString());

            // create new generation
            threshold = 0;
            reproduction(selection(threshold));
            }
        }



    /**
     * Execute method for <code>Evolution</code>.
     *
     * The syntax for running this method at the command line is included in
     * the class comments for <code>Evolution</code>.  This method takes an
     * array of <code>String</code> arguments and, depending on the
     * arguments, makes a new <code>Evolution</code> that uses either the
     * number-of-ones or the binary number fitness function.  It creates
     * a log file, and then calls <code>evolve</code> to do the work.  Any
     * exception that is thrown in this process is caught, a stack trace is
     * printed, and the program exits.
     *
     * @param args    an array of <code>String</code> parameters from the
     *                command line
     *
     * @see #Evolution
     */
    public static void main(String args[])
        {
        Evolution      evolution       = null;
        int            pop_size        = 0;
        int            chromosome_size = 0;
        int            generations     = 0;
        double         crossover_rate  = 0;
        double         mutation_rate   = 0;
        BufferedWriter log             = null;
        int            number          = 0;
        boolean[]      binary          = null;

        try
            {

            // get command line parameters 
            pop_size        = Integer.parseInt(args[1]);
            chromosome_size = Integer.parseInt(args[2]);
            generations     = Integer.parseInt(args[3]);
            crossover_rate  = Double.parseDouble(args[4]);
            mutation_rate   = Double.parseDouble(args[5]);
            log             = new BufferedWriter(new FileWriter(args[6]));

            if (args[0].equals("ones") && (args.length == 7))
                {
                evolution = new Evolution(pop_size, chromosome_size, crossover_rate, mutation_rate);
                }
            else if (args[0].equals("binary") && (args.length == 8))
                {
                number = Integer.parseInt(args[7]);
                binary = Evolution.toBinary(number, chromosome_size);
                evolution = new Evolution(pop_size, binary, crossover_rate, mutation_rate);
                }
            else
                {
                System.err.println("Usage: java Evolution ones <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile>");
                System.err.println("Usage: java Evolution binary <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile> <binary_number>");
                System.exit(1);
                }

            evolution.evolve(generations, log);
            log.flush();
            log.close();
            }
        catch (Exception e)
            {
            e.printStackTrace();
            System.err.println("Usage: java Evolution ones <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile>");
            System.err.println("Usage: java Evolution binary <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile> <binary_number>");
            System.exit(1);
            }
        }
    }

Chromosome.java

import java.util.*; // Random


/**
 * <code>Chromosome</code> is a wrapper class for a bit vectory representing
 * an individual in a population for a genetic algorithm.
 *
 * This class has three main functions: First, it holds the "genetic"
 * information for an individual in a genetic algorithm population.  This
 * information takes the form of a bit vector, represented as a boolean
 * array.  Second, it computes and holds the fitness value for the
 * individual represented by a particular instantiation of this class.
 * Currently, there are two fitness functions available, which are described
 * later.  Finally, it provides static functions for the recombination of
 * gene sequences.
    */
public class Chromosome implements Cloneable
    {


    /**
     * the target gene sequence, if the fitness function is
     * <code>binary_number</code>
     */
    private boolean target[];


    /**
     * the bit vector representing the gene sequence
     */
    private boolean genes[];


    /**
     * the fitness value for this <code>Chromosome</code>
     */
    private int fit = 0;



    /**
     * Constructor for <code>Chromosomes</code> that use the
     * <code>number_of_ones</code> fitness function.
     *
     * @param length    the length of the gene sequence this
     *                  <code>Chromosome</code> will contain
     * @param rand      a <code>Random</code> object
     *
     * @see #no_of_ones()
     * @see java.util.Random
     */
    public Chromosome(int length, Random rand)
        {
        genes = new boolean[length];
        rand_sequence(rand);

        // fitness = the number of ones
        target = null;
        fitness();
        }



    /**
     * Constructor for <code>Chromosomes</code> that use the
     * <code>binary_number</code> fitness function.
     *
     * @param in_target the length of the gene sequence this
     *                  <code>Chromosome</code> will contain
     * @param rand      a <code>Random</code> object
     *
     * @see #binary_number()
     * @see java.util.Random
     */
    public Chromosome(boolean[] in_target, Random rand)
        {
        genes = new boolean[in_target.length];
        rand_sequence(rand);

        // fitness = closeness to a binary number
        target = in_target;
        fitness();
        }



    /**
     * Returns a copy of this <code>Chromosome</code> obtained from the
     * <code>clone</code> method in <code>java.lang.Object</code>.
     *
     * @return  a new <code>Chromosome</code> object with exactly the same
     *          values as this <code>Chromosome</code> object
     *
     * @see java.lang.Object#clone()
     */
    public Chromosome getCopy()
        {
        Chromosome copy = null;

        try
            {
            copy = (Chromosome)(this.clone());
            }
        catch (Exception e)
            {
            e.printStackTrace();
            }

        return copy;
        }



    /**
     * Returns the fitness value for this <code>Chromosome</code>.
     *
     * @return  a non-negative <code>int</code> representing the fitness of
     *          this <code>Chromosome</code> object
     *
     * @see #fit
     */
    public int get_fit()
        {
        return fit;
        }



    /**
     * Prints the fitness and gene sequence of this <code>Chromosome</code>
     * to stdout.
     */
    public void print()
        {
        StringBuffer buffer = new StringBuffer();

        // print fitness
        buffer.append("fitness: ");
        buffer.append(fit);
        buffer.append("\t");

        // print gene genes
        buffer.append("[");
        for (int i = 0; i < genes.length; i++)
            {
            if (genes[i])
                {
                buffer.append(1);
                }
            else
                {
                buffer.append(0);
                }
            if (i < (genes.length - 1))
                {
                buffer.append(" ");
                }
            }
        buffer.append("]");

        System.out.println(buffer.toString());
        }



    public static void crossover(Chromosome parent1, Chromosome parent2, Random rand)
        {
        int cross_point = rand.nextInt(parent1.genes.length);
        boolean swap_buff = true;

        for (int i = 0; i <= cross_point; i++)
            {
            swap_buff = parent1.get(i);
            parent1.set(i, parent2.get(i));
            parent2.set(i, swap_buff);
            }

        // update fitness
        parent1.fitness();
        parent2.fitness();
        }




    public static void mutate(Chromosome parent, Random rand)
        {
        int index = rand.nextInt(parent.genes.length);

        // mutate at index
        parent.set(index, !parent.get(index));

        // update fitness
        parent.fitness();
        }



    /**
     * Returns the gene at <code>index</code> in <code>genes</code>.
     *
     * @return  the <code>boolean</code> value of the gene at
     *          <code>index</code> in the <code>genes</code> array.
     *
     * @see #genes
     */
    private boolean get(int index)
        {
        return genes[index];
        }



    /**
     * Sets the gene at <code>index</code> in <code>genes</code>.
     *
     * @see #genes
     */
    private void set(int index, boolean value)
        {
        genes[index] = value;
        }




    private void fitness()
        {

        // choose proper fitness function
        if (target == null)
            {
            no_of_ones();
            }
        else
            {
            binary_number();
            }
        }




    private void rand_sequence(Random rand)
        {
        for (int i = 0; i < genes.length; i++)
            {
            genes[i] = rand.nextBoolean();
            }
        }


    private void binary_number()
        {
        int count = 0;

        // count genes that are the same as the target
        for (int i = 0; i < genes.length; i++)
            {
            if (genes[i] == target[i])
                {
                count++;
                }
            }

        // set fitness
        fit = count;
        }




    private void no_of_ones()
        {
        int count = 0;

        // count genes that are true
        for (int i = 0; i < genes.length; i++)
            {
            if (genes[i])
                {
                count++;
                }
            }

        // set fitness
        fit = count;
        }

    }
Другие вопросы по тегам